Phosphorylation of Maskin by Aurora-A Participates in the Control of Sequential Protein Synthesis during Xenopus laevis Oocyte Maturation

At the end of oogenesis, Xenopus laevis stage VI oocytes are arrested at the G2/M transition (prophase) waiting for progesterone to release the block and begin maturation. Progesterone triggers a cascade of phosphorylation events such as a decrease of pKa and an increase of maturating-promoting fact...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 280; no. 14; pp. 13415 - 13423
Main Authors Pascreau, Gaetan, Delcros, Jean-Guy, Cremet, Jean-Yves, Prigent, Claude, Arlot-Bonnemains, Yannick
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.04.2005
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:At the end of oogenesis, Xenopus laevis stage VI oocytes are arrested at the G2/M transition (prophase) waiting for progesterone to release the block and begin maturation. Progesterone triggers a cascade of phosphorylation events such as a decrease of pKa and an increase of maturating-promoting factor activity. Progression through meiosis was controlled by the sequential synthesis of several proteins. For instance, the MAPK kinase kinase c-Mos is the very first protein to be produced, whereas cyclin B1 appears only after meiosis I. After the meiotic cycles, the oocyte arrests at metaphase of meiosis II with an elevated c-Mos kinase activity (cytostatic factor). By using a two-hybrid screen, we have identified maskin, a protein involved in the control of mRNA sequential translation, as a binding partner of Aurora-A, a protein kinase necessary for oocyte maturation. Here we showed that, in vitro, Aurora-A directly binds to maskin and that both proteins can be co-immunoprecipitated from oocyte extracts, suggesting that they do associate in vivo. We also demonstrated that Aurora-A phosphorylates maskin on a Ser residue conserved in transforming acidic coiled coil proteins from Drosophila to human. When the phosphorylation of this Ser was inhibited in vivo by microinjection of synthetic peptides that mimic the maskin-phosphorylated sequence, we observed a premature maturation. Under these conditions, proteins such as cyclin B1 and Cdc6, which are normally detected only in meiosis II, were massively produced in meiosis I before the occurrence of the nuclear envelope breakdown. This result strongly suggests that phosphorylation of maskin by Aurora-A prevents meiosis II proteins from being produced during meiosis I.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M410584200