Anti-Phospholipid Antibodies Restore Mesenteric Ischemia/Reperfusion-Induced Injury in Complement Receptor 2/Complement Receptor 1-Deficient Mice

Complement receptor 2-deficient (Cr2(-/-)) mice are resistant to mesenteric ischemia/reperfusion (I/R) injury because they lack a component of the natural Ab repertoire. Neither the nature of the Abs that are involved in I/R injury nor the composition of the target Ag, to which recognition is lackin...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 173; no. 11; pp. 7055 - 7061
Main Authors Fleming, Sherry D, Egan, Ryan P, Chai, Chunyan, Girardi, Guillermina, Holers, V. Michael, Salmon, Jane, Monestier, Marc, Tsokos, George C
Format Journal Article
LanguageEnglish
Published United States Am Assoc Immnol 01.12.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Complement receptor 2-deficient (Cr2(-/-)) mice are resistant to mesenteric ischemia/reperfusion (I/R) injury because they lack a component of the natural Ab repertoire. Neither the nature of the Abs that are involved in I/R injury nor the composition of the target Ag, to which recognition is lacking in Cr2(-/-) mice, is known. Because anti-phospholipid Abs have been shown to mediate fetal growth retardation and loss when injected into pregnant mice, we performed experiments to determine whether anti-phospholipid Abs can also reconstitute I/R injury and, therefore, represent members of the injury-inducing repertoire that is missing in Cr2(-/-) mice. We demonstrate that both murine and human monoclonal and polyclonal Abs against negatively charged phospholipids can reconstitute mesenteric I/R-induced intestinal and lung tissue damage in Cr2(-/-) mice. In addition, Abs against beta2 glycoprotein I restore local and remote tissue damage in the Cr2(-/-) mice. Unlike Cr2(-/-) mice, reconstitution of I/R tissue damage in the injury-resistant Rag-1(-/-) mouse required the infusion of both anti-beta2-glycoprotein I and anti-phospholipid Ab. We conclude that anti-phospholipid Abs can bind to tissues subjected to I/R insult and mediate tissue damage.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.173.11.7055