Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction
A PtFe/C catalyst has been synthesized by impregnation and high-temperature reduction followed by acid-leaching. X-ray diffraction, X-ray photoelectron spectroscopy and X-ray atomic near edge spectroscopy characterization reveal that PtgFe alloy formation occurs during high-temperature reduction and...
Saved in:
Published in | Nano research Vol. 7; no. 10; pp. 1519 - 1527 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Tsinghua University Press
01.10.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A PtFe/C catalyst has been synthesized by impregnation and high-temperature reduction followed by acid-leaching. X-ray diffraction, X-ray photoelectron spectroscopy and X-ray atomic near edge spectroscopy characterization reveal that PtgFe alloy formation occurs during high-temperature reduction and that unstable Fe species are dissolved into acid solution. The difference in Fe concentration from the core region to the surface and strong O-Fe bonding may drive the outward diffusion of Fe to the highly corrugated Pt-skeleton, and the resulting highly dispersed surface FeOx is stable in acidic medium, leading to the construction of a PtBFe@Pt-FeOx architecture. The as prepared PtFe/C catalyst demonstrates a higher activity and comparable durability for the oxygen reduction reaction compared with a Pt/C catalyst, which might be due to the synergetic effect of surface and subsurface Fe species in the PtFe/C catalyst. |
---|---|
Bibliography: | Pt3Fe@Pt-FeOx architecture,activity,durability,oxygen reduction reaction,proton exchangemembrane fuel cell A PtFe/C catalyst has been synthesized by impregnation and high-temperature reduction followed by acid-leaching. X-ray diffraction, X-ray photoelectron spectroscopy and X-ray atomic near edge spectroscopy characterization reveal that PtgFe alloy formation occurs during high-temperature reduction and that unstable Fe species are dissolved into acid solution. The difference in Fe concentration from the core region to the surface and strong O-Fe bonding may drive the outward diffusion of Fe to the highly corrugated Pt-skeleton, and the resulting highly dispersed surface FeOx is stable in acidic medium, leading to the construction of a PtBFe@Pt-FeOx architecture. The as prepared PtFe/C catalyst demonstrates a higher activity and comparable durability for the oxygen reduction reaction compared with a Pt/C catalyst, which might be due to the synergetic effect of surface and subsurface Fe species in the PtFe/C catalyst. 11-5974/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-014-0513-0 |