Characteristics of magnetospheric energetics during geomagnetic storms
To investigate the magnetospheric energetics during magnetic storms, we performed a statistical survey of 307 geomagnetic storms between 1995 and 2009. For the purpose of getting a detailed understanding of the energy processes, we conducted our study of storm‐time energetics for three time duration...
Saved in:
Published in | Journal of Geophysical Research: Space Physics Vol. 117; no. A4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.04.2012
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To investigate the magnetospheric energetics during magnetic storms, we performed a statistical survey of 307 geomagnetic storms between 1995 and 2009. For the purpose of getting a detailed understanding of the energy processes, we conducted our study of storm‐time energetics for three time durations: the main phase, the recovery phase, and the total storm period. We found that the partition of the energy dissipation via the ring current injection and high‐latitude ionospheric dissipation is controlled by the storm intensity. The proportion of the ring current injection increases linearly as the storm intensity increases for all three time durations. For moderate storms, the high‐latitude ionospheric dissipation is dominant, with only ∼30% energy dissipated via the ring current; whereas for superstorms, the ring current injection becomes dominant, with ∼70% energy dissipated via the ring current. We also confirmed the essential and crucial role of the total energy input into the magnetosphere during the main phase in controlling the storm intensity. The total energy input during the main phase is directly proportional to the storm intensity. Their correlation efficiency is as high as 0.85. The storm‐time energy budget was also quantified in this study. The coupling efficiency indicates an exponential decay as the storm intensity increases, with the coupling efficiency during the main phase less than that during the recovery phase.
Key Points
Partition of storm‐time energy dissipation is controlled by the storm intensity
Proportion of ring current injection is positively correlated to storm intensity
Total energy input is directly proportional to the storm intensity |
---|---|
Bibliography: | ark:/67375/WNG-XTNNHPPG-V Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.Tab-delimited Table 5.Tab-delimited Table 6.Tab-delimited Table 7. National Natural Science Foundation of China - No. 40921063; No. 40831060 istex:B1DE705EB5F5CAABD88922657F434067C9B3CF8B Ministry of Science and Technology of China - No. 2012CB825602 ArticleID:2012JA017584 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0148-0227 2169-9380 2156-2202 2169-9402 |
DOI: | 10.1029/2012JA017584 |