Light‐Driven, Caterpillar‐Inspired Miniature Inching Robot

Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli‐responsive actuators that can reproduce the shape‐change of soft bodies of animal...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 39; no. 1
Main Authors Zeng, Hao, Wani, Owies M., Wasylczyk, Piotr, Priimagi, Arri
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2018
Subjects
Online AccessGet full text
ISSN1022-1336
1521-3927
1521-3927
DOI10.1002/marc.201700224

Cover

Loading…
Abstract Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli‐responsive actuators that can reproduce the shape‐change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge. This paper reports on a miniature inching robot fabricated from a monolithic liquid crystal elastomer film, which upon visible‐light excitation is capable of mimicking caterpillar locomotion on different substrates like a blazed grating and a paper surface. The motion is driven by spatially uniform visible light with relatively low intensity, rendering the robot “human‐friendly,” i.e., operational also on human skin. The design paves the way toward light‐driven, soft, mobile microdevices capable of operating in various environments, including the close proximity of humans. Soft robotics brings revolutionary possibilities to devising new moving mechanisms, being pertinent to both fundamental and applied sciences. A light‐driven, human‐friendly microrobot is reported that can mimic caterpillar inching locomotion with spatially uniform illumination. The robot is made of liquid crystal elastomer film with engineered molecular alignment distribution, and it can perform an inching gait on various surfaces, including human skin.
AbstractList Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli-responsive actuators that can reproduce the shape-change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge. This paper reports on a miniature inching robot fabricated from a monolithic liquid crystal elastomer film, which upon visible-light excitation is capable of mimicking caterpillar locomotion on different substrates like a blazed grating and a paper surface. The motion is driven by spatially uniform visible light with relatively low intensity, rendering the robot "human-friendly," i.e., operational also on human skin. The design paves the way toward light-driven, soft, mobile microdevices capable of operating in various environments, including the close proximity of humans.
Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli‐responsive actuators that can reproduce the shape‐change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge. This paper reports on a miniature inching robot fabricated from a monolithic liquid crystal elastomer film, which upon visible‐light excitation is capable of mimicking caterpillar locomotion on different substrates like a blazed grating and a paper surface. The motion is driven by spatially uniform visible light with relatively low intensity, rendering the robot “human‐friendly,” i.e., operational also on human skin. The design paves the way toward light‐driven, soft, mobile microdevices capable of operating in various environments, including the close proximity of humans. Soft robotics brings revolutionary possibilities to devising new moving mechanisms, being pertinent to both fundamental and applied sciences. A light‐driven, human‐friendly microrobot is reported that can mimic caterpillar inching locomotion with spatially uniform illumination. The robot is made of liquid crystal elastomer film with engineered molecular alignment distribution, and it can perform an inching gait on various surfaces, including human skin.
Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli-responsive actuators that can reproduce the shape-change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge. This paper reports on a miniature inching robot fabricated from a monolithic liquid crystal elastomer film, which upon visible-light excitation is capable of mimicking caterpillar locomotion on different substrates like a blazed grating and a paper surface. The motion is driven by spatially uniform visible light with relatively low intensity, rendering the robot "human-friendly," i.e., operational also on human skin. The design paves the way toward light-driven, soft, mobile microdevices capable of operating in various environments, including the close proximity of humans.Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli-responsive actuators that can reproduce the shape-change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge. This paper reports on a miniature inching robot fabricated from a monolithic liquid crystal elastomer film, which upon visible-light excitation is capable of mimicking caterpillar locomotion on different substrates like a blazed grating and a paper surface. The motion is driven by spatially uniform visible light with relatively low intensity, rendering the robot "human-friendly," i.e., operational also on human skin. The design paves the way toward light-driven, soft, mobile microdevices capable of operating in various environments, including the close proximity of humans.
Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli‐responsive actuators that can reproduce the shape‐change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge. This paper reports on a miniature inching robot fabricated from a monolithic liquid crystal elastomer film, which upon visible‐light excitation is capable of mimicking caterpillar locomotion on different substrates like a blazed grating and a paper surface. The motion is driven by spatially uniform visible light with relatively low intensity, rendering the robot “human‐friendly,” i.e., operational also on human skin. The design paves the way toward light‐driven, soft, mobile microdevices capable of operating in various environments, including the close proximity of humans. image
Author Priimagi, Arri
Zeng, Hao
Wani, Owies M.
Wasylczyk, Piotr
Author_xml – sequence: 1
  givenname: Hao
  surname: Zeng
  fullname: Zeng, Hao
  email: hao.zeng@tut.fi
  organization: Tampere University of Technology
– sequence: 2
  givenname: Owies M.
  surname: Wani
  fullname: Wani, Owies M.
  organization: Tampere University of Technology
– sequence: 3
  givenname: Piotr
  surname: Wasylczyk
  fullname: Wasylczyk, Piotr
  organization: University of Warsaw
– sequence: 4
  givenname: Arri
  orcidid: 0000-0002-5945-9671
  surname: Priimagi
  fullname: Priimagi, Arri
  email: arri.priimagi@tut.fi
  organization: Tampere University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28561989$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKAzEUhoNUtFa3LmXAjQun5jaTyUYo9VZoEUTXQyZzRlOmmZrMKO58BJ_RJzGlXkAQV0kO359zzreDeraxgNA-wUOCMT1ZKKeHFBMRHpRvoD5JKImZpKIX7qEWE8bSbbTj_RxjnHFMt9A2zZKUyEz20enU3D-0769vZ848gT2OxqoFtzR1rVyoTqxfGgdlNDPWqLZzEE2sfjD2PrppiqbdRZuVqj3sfZ4DdHdxfju-iqfXl5PxaBprLiSPVaUEQEETUmhacIYrDEUqsMBlqhmpCEtBSsUgkSxJy0pWFAsQuBIsZZku2AAdrf9duuaxA9_mC-M1hCktNJ3PicScMh72C-jhL3TedM6G6QKVJQnjWUYCdfBJdcUCynzpTFD5kn-ZCcBwDWjXeO-g-kYIzlfq85X6_Ft9CPBfAW1a1ZrGtk6Z-u-YXMeeTQ0v_zTJZ6Ob8U_2A3OgmGE
CitedBy_id crossref_primary_10_1103_PhysRevE_103_012701
crossref_primary_10_3390_ijms241813691
crossref_primary_10_1021_acsami_9b20672
crossref_primary_10_1021_acs_chemrev_1c00761
crossref_primary_10_3390_mi12080969
crossref_primary_10_1002_advs_201902842
crossref_primary_10_1002_advs_202203305
crossref_primary_10_1002_adom_202001861
crossref_primary_10_1002_ejoc_202101271
crossref_primary_10_1016_j_snb_2020_128620
crossref_primary_10_1002_advs_202103090
crossref_primary_10_1007_s10854_023_10605_5
crossref_primary_10_1002_adom_201900262
crossref_primary_10_1002_adma_202418730
crossref_primary_10_1002_smb2_12007
crossref_primary_10_1039_C8TC03877E
crossref_primary_10_1002_aisy_202100259
crossref_primary_10_1002_adfm_202214205
crossref_primary_10_1002_pol_20220492
crossref_primary_10_1002_adma_202002753
crossref_primary_10_1002_adfm_202105728
crossref_primary_10_1002_ange_201813402
crossref_primary_10_1021_acsami_3c08973
crossref_primary_10_1002_adma_201906564
crossref_primary_10_1039_C9NR05416B
crossref_primary_10_1002_adma_201903452
crossref_primary_10_1002_aisy_202000138
crossref_primary_10_1016_j_eml_2019_100502
crossref_primary_10_1021_acsami_9b17393
crossref_primary_10_1039_D4TC04063E
crossref_primary_10_1098_rspa_2022_0545
crossref_primary_10_3390_biomimetics9040198
crossref_primary_10_1080_00207721_2022_2163205
crossref_primary_10_1002_adom_202001743
crossref_primary_10_1039_C9PY00793H
crossref_primary_10_1039_D4BM00674G
crossref_primary_10_3390_nano10010077
crossref_primary_10_1002_marc_202000456
crossref_primary_10_1002_adfm_201901890
crossref_primary_10_1021_acsami_9b09491
crossref_primary_10_1021_acs_chemrev_1c00626
crossref_primary_10_1002_mame_202300061
crossref_primary_10_1126_scirobotics_abn0602
crossref_primary_10_1002_sdtp_15204
crossref_primary_10_1103_PhysRevE_103_L041002
crossref_primary_10_1002_advs_202102662
crossref_primary_10_3390_mi15060731
crossref_primary_10_1002_ange_201807495
crossref_primary_10_1016_j_nanoen_2024_110050
crossref_primary_10_1016_j_jtice_2024_105671
crossref_primary_10_1039_D1MH01810H
crossref_primary_10_1109_LRA_2019_2896917
crossref_primary_10_1002_adma_202003558
crossref_primary_10_1002_adom_201801604
crossref_primary_10_1073_pnas_1917952117
crossref_primary_10_1002_aisy_202000146
crossref_primary_10_1016_j_eml_2020_101079
crossref_primary_10_1038_s41467_022_33409_3
crossref_primary_10_1039_C8QM00363G
crossref_primary_10_1002_aisy_202000148
crossref_primary_10_1016_j_ijsolstr_2024_112895
crossref_primary_10_1002_pol_20210567
crossref_primary_10_1039_C8TC03693D
crossref_primary_10_1002_aisy_202300168
crossref_primary_10_1002_aisy_202100233
crossref_primary_10_1039_D3SM01374J
crossref_primary_10_1002_adma_202307210
crossref_primary_10_1080_19475411_2024_2385349
crossref_primary_10_1002_ntls_20220020
crossref_primary_10_1021_acsami_5c00638
crossref_primary_10_1002_aisy_202200051
crossref_primary_10_1002_admt_202101660
crossref_primary_10_3390_app13169255
crossref_primary_10_3390_applmech2020021
crossref_primary_10_1007_s10570_019_02585_9
crossref_primary_10_3390_photonics8110481
crossref_primary_10_1002_aisy_201900050
crossref_primary_10_1016_j_mser_2023_100745
crossref_primary_10_1016_j_eml_2024_102148
crossref_primary_10_1007_s11431_018_9408_3
crossref_primary_10_20965_jrm_2022_p0131
crossref_primary_10_2139_ssrn_4067932
crossref_primary_10_1002_adfm_201802235
crossref_primary_10_1039_D0TB00392A
crossref_primary_10_1021_acsnano_2c12203
crossref_primary_10_1002_adfm_202206939
crossref_primary_10_1557_s43578_021_00381_5
crossref_primary_10_1002_aisy_202100085
crossref_primary_10_1002_aisy_202300311
crossref_primary_10_1002_marc_201900412
crossref_primary_10_3390_robotics8010004
crossref_primary_10_1063_5_0053302
crossref_primary_10_1364_AOP_11_000577
crossref_primary_10_3390_polym13111889
crossref_primary_10_1002_adma_202003139
crossref_primary_10_3390_molecules27144330
crossref_primary_10_1039_C8CC09915D
crossref_primary_10_1002_advs_202304715
crossref_primary_10_1002_admt_202101732
crossref_primary_10_1016_j_isci_2023_106357
crossref_primary_10_1002_admt_202301862
crossref_primary_10_1002_anie_201813402
crossref_primary_10_1002_chem_202005486
crossref_primary_10_1103_PhysRevE_109_054704
crossref_primary_10_1515_nanoph_2018_0040
crossref_primary_10_1002_adom_201900067
crossref_primary_10_1002_admt_201800244
crossref_primary_10_1063_5_0203482
crossref_primary_10_1039_C9TC00107G
crossref_primary_10_1002_anie_201807495
crossref_primary_10_1016_j_mattod_2022_01_014
crossref_primary_10_1002_aisy_202300060
crossref_primary_10_1021_acs_chemrev_9b00288
crossref_primary_10_1007_s10846_022_01649_6
crossref_primary_10_1021_acsami_8b08025
crossref_primary_10_1088_1361_665X_ac2919
crossref_primary_10_1016_j_aca_2021_338392
crossref_primary_10_1039_D0CS00363H
crossref_primary_10_1002_adfm_202421111
crossref_primary_10_1039_C9TC06689F
crossref_primary_10_3389_frsfm_2022_1052037
crossref_primary_10_1126_scirobotics_aax7044
crossref_primary_10_1002_adma_201906766
crossref_primary_10_1088_1742_6596_2386_1_012088
crossref_primary_10_1002_admt_202400039
crossref_primary_10_1002_adfm_202010706
crossref_primary_10_1088_1748_3190_adbc5d
crossref_primary_10_1021_acsami_0c18449
crossref_primary_10_1109_TIE_2020_2970641
crossref_primary_10_1039_D4RA00495G
crossref_primary_10_1002_adfm_202009835
crossref_primary_10_1039_C8QM00190A
crossref_primary_10_1088_1361_6439_ab8907
crossref_primary_10_1002_marc_201800815
crossref_primary_10_1039_D0CC02823A
crossref_primary_10_1002_adma_201801103
crossref_primary_10_1088_2399_7532_ac55fd
crossref_primary_10_1146_annurev_control_053018_023814
crossref_primary_10_1021_acsmacrolett_1c00040
crossref_primary_10_3390_molecules26237313
crossref_primary_10_1039_D1TB01335A
crossref_primary_10_1103_PhysRevResearch_3_023191
crossref_primary_10_1002_marc_201900279
crossref_primary_10_1002_adfm_201802809
crossref_primary_10_1038_s41928_018_0024_1
crossref_primary_10_1021_acsami_8b07563
crossref_primary_10_1088_1361_665X_ac95e5
crossref_primary_10_1177_1045389X221151065
crossref_primary_10_1007_s42452_021_04453_3
crossref_primary_10_1063_5_0014619
crossref_primary_10_3390_act9040131
crossref_primary_10_3390_polym16141957
crossref_primary_10_1002_slct_202301628
crossref_primary_10_1002_anie_202012417
crossref_primary_10_1016_j_apmt_2019_100463
crossref_primary_10_1002_admt_202000695
crossref_primary_10_1021_acsnano_1c06651
crossref_primary_10_1021_acsphotonics_3c00140
crossref_primary_10_1038_s41570_019_0122_2
crossref_primary_10_1002_chem_202301525
crossref_primary_10_1002_adma_201703554
crossref_primary_10_1088_1748_605X_ac8b4b
crossref_primary_10_1002_marc_201800873
crossref_primary_10_3390_ma12193065
crossref_primary_10_3390_polym14152997
crossref_primary_10_1103_PhysRevLett_121_158001
crossref_primary_10_1039_D2SM00826B
crossref_primary_10_1002_adfm_202304937
crossref_primary_10_1021_acsami_3c16530
crossref_primary_10_1016_j_sna_2024_115777
crossref_primary_10_1146_annurev_control_042920_014327
crossref_primary_10_1002_adom_202202695
crossref_primary_10_1002_smll_202311001
crossref_primary_10_1002_adma_202303740
crossref_primary_10_1021_acsami_1c19826
crossref_primary_10_1021_acs_macromol_7b01741
crossref_primary_10_1016_j_optlaseng_2022_107380
crossref_primary_10_1063_5_0021143
crossref_primary_10_1002_mame_202200187
crossref_primary_10_3389_frobt_2022_889848
crossref_primary_10_1002_adom_201900091
crossref_primary_10_1002_aisy_202200375
crossref_primary_10_1002_chem_201805814
crossref_primary_10_1016_j_isci_2022_104035
crossref_primary_10_1038_s41467_020_16272_y
crossref_primary_10_1002_admt_201900185
crossref_primary_10_1002_ange_202012417
crossref_primary_10_1039_D1SM00411E
crossref_primary_10_1002_adma_202004270
Cites_doi 10.1039/C4TC01236D
10.1038/425145a
10.1038/nchem.1859
10.1063/1.4915268
10.1561/2300000023
10.1002/adma.201301891
10.1002/adom.201600503
10.1002/pen.760310902
10.1021/acs.chemrev.6b00415
10.1021/ma047391c
10.1002/adma.201603751
10.1038/ncomms11975
10.1002/adfm.201302568
10.1002/marc.1981.030020413
10.1021/acsami.6b11550
10.1126/science.1261019
10.1021/ja2043276
10.1038/ncomms2772
10.1002/anie.201611325
10.1039/B815289F
10.1021/nl900186w
10.1093/icb/icu076
10.1002/anie.201210232
10.1002/adma.200904059
10.1002/adma.200304552
10.1002/anie.200602372
10.1038/ncomms13260
10.1038/nmat2487
10.1038/nmat4569
10.1002/9781118680469
10.1002/adma.200902879
10.1038/nmat4433
10.1002/anie.201200726
10.1021/ma034921g
10.1002/adma.201501446
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.201700224
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 28561989
10_1002_marc_201700224
MARC201700224
Genre article
Journal Article
GrantInformation_xml – fundername: European Research Council
  funderid: 679646
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
.Y3
31~
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
AZFZN
BDRZF
CITATION
FEDTE
GYXMG
HF~
HVGLF
M6T
PALCI
RIWAO
RJQFR
SAMSI
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c4794-afa7eeb251bc2b430f0eb67070d6c31f136e99a3e59356df9f207e70f73638cb3
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 07:11:34 EDT 2025
Fri Jul 25 10:11:34 EDT 2025
Wed Feb 19 02:44:36 EST 2025
Tue Jul 01 03:31:36 EDT 2025
Thu Apr 24 23:05:09 EDT 2025
Wed Jan 22 16:21:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords azobenzene
photoactuation
liquid crystal elastomer
biomimetic
locomotion
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4794-afa7eeb251bc2b430f0eb67070d6c31f136e99a3e59356df9f207e70f73638cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5945-9671
OpenAccessLink https://zenodo.org/record/3447266
PMID 28561989
PQID 1985534881
PQPubID 1016394
PageCount 6
ParticipantIDs proquest_miscellaneous_1904234084
proquest_journals_1985534881
pubmed_primary_28561989
crossref_primary_10_1002_marc_201700224
crossref_citationtrail_10_1002_marc_201700224
wiley_primary_10_1002_marc_201700224_MARC201700224
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Jan
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 14
2013; 4
2013; 25
2013; 2
2015; 347
1981; 2
1991; 31
2003; 36
2008
2003; 15
2014; 24
2015; 106
2016; 15
2017; 9
2011; 133
2016; 4
2010; 22
2016; 7
2015; 27
2003 2014; 425 2
2017; 56
2013; 52
2009; 9
2009; 8
2017
2010 2012; 22 51
2016; 116
2013
2016; 28
2009; 19
2005; 38
2014; 6
2007; 46
2014; 54
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Zeng H. (e_1_2_7_31_1) 2017
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
Frutiger D. R. (e_1_2_7_23_1) 2008
e_1_2_7_34_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
Wani O. M. (e_1_2_7_21_1) 2017
References_xml – year: 2017
  publication-title: Nat. Commun.
– volume: 347
  start-page: 982
  year: 2015
  publication-title: Science
– volume: 31
  start-page: 625
  year: 1991
  publication-title: Polym. Eng. Sci.
– volume: 133
  start-page: 15810
  year: 2011
  publication-title: J. Am. Chem. Soc.
– start-page: 1770
  year: 2008
  publication-title: IEEE Int. Conf. Rob. Biomimetics
– volume: 9
  start-page: 2243
  year: 2009
  publication-title: Nano Lett.
– volume: 15
  start-page: 647
  year: 2016
  publication-title: Nat. Mater.
– volume: 106
  start-page: 111902
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 569
  year: 2003
  publication-title: Adv. Mater.
– volume: 19
  start-page: 60
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 52
  start-page: 9234
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 782
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 3366
  year: 2010
  publication-title: Adv. Mater.
– volume: 8
  start-page: 677
  year: 2009
  publication-title: Nat. Mater.
– volume: 4
  start-page: 1689
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 46
  start-page: 506
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 425 2
  start-page: 145 7155
  year: 2003 2014
  publication-title: Nature J. Mater. Chem. C
– volume: 24
  start-page: 1251
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 143
  year: 2013
  publication-title: Found. Trends Databases
– volume: 116
  start-page: 15089
  year: 2016
  publication-title: Chem. Rev.
– volume: 2
  start-page: 317
  year: 1981
  publication-title: Makromol. Chem., Rapid Commun.
– volume: 22 51
  start-page: 1361 4117
  year: 2010 2012
  publication-title: Adv. Mater. Angew. Chem., Int. Ed.
– volume: 4
  start-page: 1739
  year: 2013
  publication-title: Nat. Commun.
– volume: 54
  start-page: 1122
  year: 2014
  publication-title: Integr. Comp. Biol.
– volume: 6
  start-page: 229
  year: 2014
  publication-title: Nat. Chem.
– year: 2017
  publication-title: Adv. Mater.
– volume: 25
  start-page: 5880
  year: 2013
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1087
  year: 2015
  publication-title: Nat. Mater.
– volume: 7
  start-page: 13260
  year: 2016
  publication-title: Nat. Commun.
– volume: 38
  start-page: 3469
  year: 2005
  publication-title: Macromolecules
– volume: 36
  start-page: 8499
  year: 2003
  publication-title: Macromolecules
– volume: 27
  start-page: 3883
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 11975
  year: 2016
  publication-title: Nat. Commun.
– volume: 28
  start-page: 9637
  year: 2016
  publication-title: Adv. Mater.
– volume: 56
  start-page: 3261
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– year: 2013
– ident: e_1_2_7_15_2
  doi: 10.1039/C4TC01236D
– ident: e_1_2_7_15_1
  doi: 10.1038/425145a
– ident: e_1_2_7_19_1
  doi: 10.1038/nchem.1859
– ident: e_1_2_7_13_1
  doi: 10.1063/1.4915268
– year: 2017
  ident: e_1_2_7_21_1
  publication-title: Nat. Commun.
– start-page: 1770
  year: 2008
  ident: e_1_2_7_23_1
  publication-title: IEEE Int. Conf. Rob. Biomimetics
– ident: e_1_2_7_25_1
  doi: 10.1561/2300000023
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201301891
– ident: e_1_2_7_29_1
  doi: 10.1002/adom.201600503
– ident: e_1_2_7_33_1
  doi: 10.1002/pen.760310902
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.chemrev.6b00415
– ident: e_1_2_7_32_1
  doi: 10.1021/ma047391c
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201603751
– ident: e_1_2_7_36_1
  doi: 10.1038/ncomms11975
– ident: e_1_2_7_17_1
  doi: 10.1002/adfm.201302568
– ident: e_1_2_7_9_1
  doi: 10.1002/marc.1981.030020413
– ident: e_1_2_7_34_1
  doi: 10.1021/acsami.6b11550
– ident: e_1_2_7_12_1
  doi: 10.1126/science.1261019
– ident: e_1_2_7_35_1
  doi: 10.1021/ja2043276
– ident: e_1_2_7_11_1
  doi: 10.1038/ncomms2772
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.201611325
– ident: e_1_2_7_28_1
  doi: 10.1039/B815289F
– ident: e_1_2_7_22_1
  doi: 10.1021/nl900186w
– ident: e_1_2_7_30_1
  doi: 10.1093/icb/icu076
– year: 2017
  ident: e_1_2_7_31_1
  publication-title: Adv. Mater.
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.201210232
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.200904059
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.200304552
– ident: e_1_2_7_5_1
  doi: 10.1002/anie.200602372
– ident: e_1_2_7_24_1
  doi: 10.1038/ncomms13260
– ident: e_1_2_7_18_1
  doi: 10.1038/nmat2487
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat4569
– ident: e_1_2_7_6_1
  doi: 10.1002/9781118680469
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.200902879
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat4433
– ident: e_1_2_7_8_2
  doi: 10.1002/anie.201200726
– ident: e_1_2_7_7_1
  doi: 10.1021/ma034921g
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.201501446
SSID ssj0008402
Score 2.6108682
Snippet Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Artificial muscles
azobenzene
biomimetic
Deformation
Elastomers
Energy sources
Equipment Design
Humans
Light
liquid crystal elastomer
Liquid crystals
Liquid Crystals - chemistry
Locomotion
Luminous intensity
Materials selection
Mimicry
Molecular Structure
Muscles
photoactuation
Robotics
Robots
Skin
Skin - chemistry
Substrates
Surface Properties
Title Light‐Driven, Caterpillar‐Inspired Miniature Inching Robot
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201700224
https://www.ncbi.nlm.nih.gov/pubmed/28561989
https://www.proquest.com/docview/1985534881
https://www.proquest.com/docview/1904234084
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hOLSXAn0RXgpSpV4aSOzYTi5IqwUEiOWwLRK3yM5OpBUoi5bdCyd-Ar-RX8JMsgksqEJqb3k4ijP2jL8ZT74B-OEIMyiV2MAlgzyIowgDG0sRoNV5bEMUYRXM6Z3r44v49FJdvviLv-aHaANurBmVvWYFt-5275k0lKkeODXLVMsQGWFO2GJU1H_mjyLvpd7uJI-LnDHdsDaGYm_-8flV6Q3UnEeu1dJztAy26XSdcXK1O5243fzuFZ_j_3zVCnya4VK_U0-kVVjA8jN86Dbl4L7A_hm78Y_3DwdjNpC__K7ldEUuWjSmqyclb9njwO8Ny2FFFuqT6eHwlt8fudHkK1wcHf7pHgez4gtBzqTzgS2sQXK7VeRy4WIZFiE6bchCDHQuo4KkjWlqJapUKj0o0kKEBk1YGEkqnTv5DRbLUYlr4DuFwiAzl9KAoHBWx1qYECOnncFIehA0ws_yGTM5F8i4zmpOZZGxVLJWKh78bNvf1Jwcf2252YxlNtPN2yxKE6UkGa7Ig532NkmTt0psiaMpt-F8oZj668H3eg60rxIJYc40ST0Q1Ui-04es1-l327P1f3loAz7ScVJHfjZhcTKe4hZhoYnbhqXOQe_s93Y1758AQ24BEA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwEB6xcGAv_O0uhN8grcRlA7Ed28kFCRVQgZZDBdLeIjudSAiUotJeOPEIPCNPgidpggpCKy3HOGPFHnvGM-PJNwC_rbMZpIxNYON-FkSMYWAiwQM0KotMiDwsgzndS9W-js7_yjqbkP6FqfAhmoAbSUapr0nAKSB98IYaSlgPlJuly3PoG8xRWW8qYnDce0OQcv5LdeHpfC7njqkatzHkB9P9p8-lD8bmtO1aHj6ni2DrYVc5J7f745Hdzx7fITp-aV5LsDAxTf2jai8twwwWKzDfqivC_YDDDnnyL0_Px0PSkX_8lqGMRapbNHStZwXd2mPf794UNyVeqO-0D0W4_N7ADkY_4fr05KrVDib1F4KMcOcDkxuNzvOWzGbcRiLMQ7RKOyXRV5lgORMKk8QIlImQqp8nOQ816jDXwkl1ZsUvmC0GBa6BbyVyjQRe6lYEuTUqUlyHyKyyGpnwIKi5n2YTcHKqkXGXVrDKPCWupA1XPNhr6O8rWI5PKTfrxUwn4vmQsiSWUjjdxTzYbV47btJtiSlwMCYaShmK3Hg9WK02QfMpHjuzM4kTD3i5lP8YQ9o96rWap_X_6bQD8-2rbiftnF1ebMB31x5XgaBNmB0Nx7jlTKOR3S43_ys6JAOW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkYBLy28JbSFISFxIG9uxnVwqVVtWLXQrtKJSb5GdTKSKKlstuxdOfYQ-Y5-EmWSTdqkQEhyT2Ioz9oy_GU--AXjvCTNonbrIp2URJUJg5BIlI3SmSFyMMm6COaNjc3CSfD7Vp7f-4m_5IfqAG2tGY69ZwS_KaueGNJSpHjg1yzbb0H14kBjSGIZF4xsCKXJf2vNOcrnIGzMdbWMsd5b7L29Ld7DmMnRt9p7hGrhu1G3Kyfft-cxvFz9_I3T8n896AqsLYBrutSvpKdzD-hk8GnT14J7D7hH78deXV_tTtpAfw4HjfEWuWjSlu4c1n9ljGY7O6rOGLTQk28PxrXA88ZPZCzgZfvo2OIgW1ReiglnnI1c5i-R3a-EL6RMVVzF6Y8lElKZQohLKYJY5hTpT2pRVVsnYoo0rq0inC69ewko9qfEVhF6jtMjUpTQhKL0ziZE2RuGNtyhUAFEn_LxYUJNzhYzzvCVVljlLJe-lEsCHvv1FS8rxx5ab3VzmC-X8kYss1VqR5RIBvOsfkzT5rMTVOJlzG04YSmi8Aay3a6B_lUwJdGZpFoBsZvIvY8hHe-NBf_X6Xzq9hYdf94f50eHxlw14TLfTNgq0CSuz6Ry3CBfN_Jtm6f8CQHsCTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light%E2%80%90Driven%2C+Caterpillar%E2%80%90Inspired+Miniature+Inching+Robot&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Zeng%2C+Hao&rft.au=Wani%2C+Owies+M.&rft.au=Wasylczyk%2C+Piotr&rft.au=Priimagi%2C+Arri&rft.date=2018-01-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=39&rft.issue=1&rft_id=info:doi/10.1002%2Fmarc.201700224&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_201700224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon