Light‐Driven, Caterpillar‐Inspired Miniature Inching Robot
Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli‐responsive actuators that can reproduce the shape‐change of soft bodies of animal...
Saved in:
Published in | Macromolecular rapid communications. Vol. 39; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1022-1336 1521-3927 1521-3927 |
DOI | 10.1002/marc.201700224 |
Cover
Loading…
Abstract | Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli‐responsive actuators that can reproduce the shape‐change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge. This paper reports on a miniature inching robot fabricated from a monolithic liquid crystal elastomer film, which upon visible‐light excitation is capable of mimicking caterpillar locomotion on different substrates like a blazed grating and a paper surface. The motion is driven by spatially uniform visible light with relatively low intensity, rendering the robot “human‐friendly,” i.e., operational also on human skin. The design paves the way toward light‐driven, soft, mobile microdevices capable of operating in various environments, including the close proximity of humans.
Soft robotics brings revolutionary possibilities to devising new moving mechanisms, being pertinent to both fundamental and applied sciences. A light‐driven, human‐friendly microrobot is reported that can mimic caterpillar inching locomotion with spatially uniform illumination. The robot is made of liquid crystal elastomer film with engineered molecular alignment distribution, and it can perform an inching gait on various surfaces, including human skin. |
---|---|
AbstractList | Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli-responsive actuators that can reproduce the shape-change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge. This paper reports on a miniature inching robot fabricated from a monolithic liquid crystal elastomer film, which upon visible-light excitation is capable of mimicking caterpillar locomotion on different substrates like a blazed grating and a paper surface. The motion is driven by spatially uniform visible light with relatively low intensity, rendering the robot "human-friendly," i.e., operational also on human skin. The design paves the way toward light-driven, soft, mobile microdevices capable of operating in various environments, including the close proximity of humans. Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli‐responsive actuators that can reproduce the shape‐change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge. This paper reports on a miniature inching robot fabricated from a monolithic liquid crystal elastomer film, which upon visible‐light excitation is capable of mimicking caterpillar locomotion on different substrates like a blazed grating and a paper surface. The motion is driven by spatially uniform visible light with relatively low intensity, rendering the robot “human‐friendly,” i.e., operational also on human skin. The design paves the way toward light‐driven, soft, mobile microdevices capable of operating in various environments, including the close proximity of humans. Soft robotics brings revolutionary possibilities to devising new moving mechanisms, being pertinent to both fundamental and applied sciences. A light‐driven, human‐friendly microrobot is reported that can mimic caterpillar inching locomotion with spatially uniform illumination. The robot is made of liquid crystal elastomer film with engineered molecular alignment distribution, and it can perform an inching gait on various surfaces, including human skin. Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli-responsive actuators that can reproduce the shape-change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge. This paper reports on a miniature inching robot fabricated from a monolithic liquid crystal elastomer film, which upon visible-light excitation is capable of mimicking caterpillar locomotion on different substrates like a blazed grating and a paper surface. The motion is driven by spatially uniform visible light with relatively low intensity, rendering the robot "human-friendly," i.e., operational also on human skin. The design paves the way toward light-driven, soft, mobile microdevices capable of operating in various environments, including the close proximity of humans.Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli-responsive actuators that can reproduce the shape-change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge. This paper reports on a miniature inching robot fabricated from a monolithic liquid crystal elastomer film, which upon visible-light excitation is capable of mimicking caterpillar locomotion on different substrates like a blazed grating and a paper surface. The motion is driven by spatially uniform visible light with relatively low intensity, rendering the robot "human-friendly," i.e., operational also on human skin. The design paves the way toward light-driven, soft, mobile microdevices capable of operating in various environments, including the close proximity of humans. Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli‐responsive actuators that can reproduce the shape‐change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge. This paper reports on a miniature inching robot fabricated from a monolithic liquid crystal elastomer film, which upon visible‐light excitation is capable of mimicking caterpillar locomotion on different substrates like a blazed grating and a paper surface. The motion is driven by spatially uniform visible light with relatively low intensity, rendering the robot “human‐friendly,” i.e., operational also on human skin. The design paves the way toward light‐driven, soft, mobile microdevices capable of operating in various environments, including the close proximity of humans. image |
Author | Priimagi, Arri Zeng, Hao Wani, Owies M. Wasylczyk, Piotr |
Author_xml | – sequence: 1 givenname: Hao surname: Zeng fullname: Zeng, Hao email: hao.zeng@tut.fi organization: Tampere University of Technology – sequence: 2 givenname: Owies M. surname: Wani fullname: Wani, Owies M. organization: Tampere University of Technology – sequence: 3 givenname: Piotr surname: Wasylczyk fullname: Wasylczyk, Piotr organization: University of Warsaw – sequence: 4 givenname: Arri orcidid: 0000-0002-5945-9671 surname: Priimagi fullname: Priimagi, Arri email: arri.priimagi@tut.fi organization: Tampere University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28561989$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtKAzEUhoNUtFa3LmXAjQun5jaTyUYo9VZoEUTXQyZzRlOmmZrMKO58BJ_RJzGlXkAQV0kO359zzreDeraxgNA-wUOCMT1ZKKeHFBMRHpRvoD5JKImZpKIX7qEWE8bSbbTj_RxjnHFMt9A2zZKUyEz20enU3D-0769vZ848gT2OxqoFtzR1rVyoTqxfGgdlNDPWqLZzEE2sfjD2PrppiqbdRZuVqj3sfZ4DdHdxfju-iqfXl5PxaBprLiSPVaUEQEETUmhacIYrDEUqsMBlqhmpCEtBSsUgkSxJy0pWFAsQuBIsZZku2AAdrf9duuaxA9_mC-M1hCktNJ3PicScMh72C-jhL3TedM6G6QKVJQnjWUYCdfBJdcUCynzpTFD5kn-ZCcBwDWjXeO-g-kYIzlfq85X6_Ft9CPBfAW1a1ZrGtk6Z-u-YXMeeTQ0v_zTJZ6Ob8U_2A3OgmGE |
CitedBy_id | crossref_primary_10_1103_PhysRevE_103_012701 crossref_primary_10_3390_ijms241813691 crossref_primary_10_1021_acsami_9b20672 crossref_primary_10_1021_acs_chemrev_1c00761 crossref_primary_10_3390_mi12080969 crossref_primary_10_1002_advs_201902842 crossref_primary_10_1002_advs_202203305 crossref_primary_10_1002_adom_202001861 crossref_primary_10_1002_ejoc_202101271 crossref_primary_10_1016_j_snb_2020_128620 crossref_primary_10_1002_advs_202103090 crossref_primary_10_1007_s10854_023_10605_5 crossref_primary_10_1002_adom_201900262 crossref_primary_10_1002_adma_202418730 crossref_primary_10_1002_smb2_12007 crossref_primary_10_1039_C8TC03877E crossref_primary_10_1002_aisy_202100259 crossref_primary_10_1002_adfm_202214205 crossref_primary_10_1002_pol_20220492 crossref_primary_10_1002_adma_202002753 crossref_primary_10_1002_adfm_202105728 crossref_primary_10_1002_ange_201813402 crossref_primary_10_1021_acsami_3c08973 crossref_primary_10_1002_adma_201906564 crossref_primary_10_1039_C9NR05416B crossref_primary_10_1002_adma_201903452 crossref_primary_10_1002_aisy_202000138 crossref_primary_10_1016_j_eml_2019_100502 crossref_primary_10_1021_acsami_9b17393 crossref_primary_10_1039_D4TC04063E crossref_primary_10_1098_rspa_2022_0545 crossref_primary_10_3390_biomimetics9040198 crossref_primary_10_1080_00207721_2022_2163205 crossref_primary_10_1002_adom_202001743 crossref_primary_10_1039_C9PY00793H crossref_primary_10_1039_D4BM00674G crossref_primary_10_3390_nano10010077 crossref_primary_10_1002_marc_202000456 crossref_primary_10_1002_adfm_201901890 crossref_primary_10_1021_acsami_9b09491 crossref_primary_10_1021_acs_chemrev_1c00626 crossref_primary_10_1002_mame_202300061 crossref_primary_10_1126_scirobotics_abn0602 crossref_primary_10_1002_sdtp_15204 crossref_primary_10_1103_PhysRevE_103_L041002 crossref_primary_10_1002_advs_202102662 crossref_primary_10_3390_mi15060731 crossref_primary_10_1002_ange_201807495 crossref_primary_10_1016_j_nanoen_2024_110050 crossref_primary_10_1016_j_jtice_2024_105671 crossref_primary_10_1039_D1MH01810H crossref_primary_10_1109_LRA_2019_2896917 crossref_primary_10_1002_adma_202003558 crossref_primary_10_1002_adom_201801604 crossref_primary_10_1073_pnas_1917952117 crossref_primary_10_1002_aisy_202000146 crossref_primary_10_1016_j_eml_2020_101079 crossref_primary_10_1038_s41467_022_33409_3 crossref_primary_10_1039_C8QM00363G crossref_primary_10_1002_aisy_202000148 crossref_primary_10_1016_j_ijsolstr_2024_112895 crossref_primary_10_1002_pol_20210567 crossref_primary_10_1039_C8TC03693D crossref_primary_10_1002_aisy_202300168 crossref_primary_10_1002_aisy_202100233 crossref_primary_10_1039_D3SM01374J crossref_primary_10_1002_adma_202307210 crossref_primary_10_1080_19475411_2024_2385349 crossref_primary_10_1002_ntls_20220020 crossref_primary_10_1021_acsami_5c00638 crossref_primary_10_1002_aisy_202200051 crossref_primary_10_1002_admt_202101660 crossref_primary_10_3390_app13169255 crossref_primary_10_3390_applmech2020021 crossref_primary_10_1007_s10570_019_02585_9 crossref_primary_10_3390_photonics8110481 crossref_primary_10_1002_aisy_201900050 crossref_primary_10_1016_j_mser_2023_100745 crossref_primary_10_1016_j_eml_2024_102148 crossref_primary_10_1007_s11431_018_9408_3 crossref_primary_10_20965_jrm_2022_p0131 crossref_primary_10_2139_ssrn_4067932 crossref_primary_10_1002_adfm_201802235 crossref_primary_10_1039_D0TB00392A crossref_primary_10_1021_acsnano_2c12203 crossref_primary_10_1002_adfm_202206939 crossref_primary_10_1557_s43578_021_00381_5 crossref_primary_10_1002_aisy_202100085 crossref_primary_10_1002_aisy_202300311 crossref_primary_10_1002_marc_201900412 crossref_primary_10_3390_robotics8010004 crossref_primary_10_1063_5_0053302 crossref_primary_10_1364_AOP_11_000577 crossref_primary_10_3390_polym13111889 crossref_primary_10_1002_adma_202003139 crossref_primary_10_3390_molecules27144330 crossref_primary_10_1039_C8CC09915D crossref_primary_10_1002_advs_202304715 crossref_primary_10_1002_admt_202101732 crossref_primary_10_1016_j_isci_2023_106357 crossref_primary_10_1002_admt_202301862 crossref_primary_10_1002_anie_201813402 crossref_primary_10_1002_chem_202005486 crossref_primary_10_1103_PhysRevE_109_054704 crossref_primary_10_1515_nanoph_2018_0040 crossref_primary_10_1002_adom_201900067 crossref_primary_10_1002_admt_201800244 crossref_primary_10_1063_5_0203482 crossref_primary_10_1039_C9TC00107G crossref_primary_10_1002_anie_201807495 crossref_primary_10_1016_j_mattod_2022_01_014 crossref_primary_10_1002_aisy_202300060 crossref_primary_10_1021_acs_chemrev_9b00288 crossref_primary_10_1007_s10846_022_01649_6 crossref_primary_10_1021_acsami_8b08025 crossref_primary_10_1088_1361_665X_ac2919 crossref_primary_10_1016_j_aca_2021_338392 crossref_primary_10_1039_D0CS00363H crossref_primary_10_1002_adfm_202421111 crossref_primary_10_1039_C9TC06689F crossref_primary_10_3389_frsfm_2022_1052037 crossref_primary_10_1126_scirobotics_aax7044 crossref_primary_10_1002_adma_201906766 crossref_primary_10_1088_1742_6596_2386_1_012088 crossref_primary_10_1002_admt_202400039 crossref_primary_10_1002_adfm_202010706 crossref_primary_10_1088_1748_3190_adbc5d crossref_primary_10_1021_acsami_0c18449 crossref_primary_10_1109_TIE_2020_2970641 crossref_primary_10_1039_D4RA00495G crossref_primary_10_1002_adfm_202009835 crossref_primary_10_1039_C8QM00190A crossref_primary_10_1088_1361_6439_ab8907 crossref_primary_10_1002_marc_201800815 crossref_primary_10_1039_D0CC02823A crossref_primary_10_1002_adma_201801103 crossref_primary_10_1088_2399_7532_ac55fd crossref_primary_10_1146_annurev_control_053018_023814 crossref_primary_10_1021_acsmacrolett_1c00040 crossref_primary_10_3390_molecules26237313 crossref_primary_10_1039_D1TB01335A crossref_primary_10_1103_PhysRevResearch_3_023191 crossref_primary_10_1002_marc_201900279 crossref_primary_10_1002_adfm_201802809 crossref_primary_10_1038_s41928_018_0024_1 crossref_primary_10_1021_acsami_8b07563 crossref_primary_10_1088_1361_665X_ac95e5 crossref_primary_10_1177_1045389X221151065 crossref_primary_10_1007_s42452_021_04453_3 crossref_primary_10_1063_5_0014619 crossref_primary_10_3390_act9040131 crossref_primary_10_3390_polym16141957 crossref_primary_10_1002_slct_202301628 crossref_primary_10_1002_anie_202012417 crossref_primary_10_1016_j_apmt_2019_100463 crossref_primary_10_1002_admt_202000695 crossref_primary_10_1021_acsnano_1c06651 crossref_primary_10_1021_acsphotonics_3c00140 crossref_primary_10_1038_s41570_019_0122_2 crossref_primary_10_1002_chem_202301525 crossref_primary_10_1002_adma_201703554 crossref_primary_10_1088_1748_605X_ac8b4b crossref_primary_10_1002_marc_201800873 crossref_primary_10_3390_ma12193065 crossref_primary_10_3390_polym14152997 crossref_primary_10_1103_PhysRevLett_121_158001 crossref_primary_10_1039_D2SM00826B crossref_primary_10_1002_adfm_202304937 crossref_primary_10_1021_acsami_3c16530 crossref_primary_10_1016_j_sna_2024_115777 crossref_primary_10_1146_annurev_control_042920_014327 crossref_primary_10_1002_adom_202202695 crossref_primary_10_1002_smll_202311001 crossref_primary_10_1002_adma_202303740 crossref_primary_10_1021_acsami_1c19826 crossref_primary_10_1021_acs_macromol_7b01741 crossref_primary_10_1016_j_optlaseng_2022_107380 crossref_primary_10_1063_5_0021143 crossref_primary_10_1002_mame_202200187 crossref_primary_10_3389_frobt_2022_889848 crossref_primary_10_1002_adom_201900091 crossref_primary_10_1002_aisy_202200375 crossref_primary_10_1002_chem_201805814 crossref_primary_10_1016_j_isci_2022_104035 crossref_primary_10_1038_s41467_020_16272_y crossref_primary_10_1002_admt_201900185 crossref_primary_10_1002_ange_202012417 crossref_primary_10_1039_D1SM00411E crossref_primary_10_1002_adma_202004270 |
Cites_doi | 10.1039/C4TC01236D 10.1038/425145a 10.1038/nchem.1859 10.1063/1.4915268 10.1561/2300000023 10.1002/adma.201301891 10.1002/adom.201600503 10.1002/pen.760310902 10.1021/acs.chemrev.6b00415 10.1021/ma047391c 10.1002/adma.201603751 10.1038/ncomms11975 10.1002/adfm.201302568 10.1002/marc.1981.030020413 10.1021/acsami.6b11550 10.1126/science.1261019 10.1021/ja2043276 10.1038/ncomms2772 10.1002/anie.201611325 10.1039/B815289F 10.1021/nl900186w 10.1093/icb/icu076 10.1002/anie.201210232 10.1002/adma.200904059 10.1002/adma.200304552 10.1002/anie.200602372 10.1038/ncomms13260 10.1038/nmat2487 10.1038/nmat4569 10.1002/9781118680469 10.1002/adma.200902879 10.1038/nmat4433 10.1002/anie.201200726 10.1021/ma034921g 10.1002/adma.201501446 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.201700224 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 28561989 10_1002_marc_201700224 MARC201700224 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: European Research Council funderid: 679646 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT .Y3 31~ AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG AZFZN BDRZF CITATION FEDTE GYXMG HF~ HVGLF M6T PALCI RIWAO RJQFR SAMSI ZY4 ABTAH CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c4794-afa7eeb251bc2b430f0eb67070d6c31f136e99a3e59356df9f207e70f73638cb3 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Fri Jul 11 07:11:34 EDT 2025 Fri Jul 25 10:11:34 EDT 2025 Wed Feb 19 02:44:36 EST 2025 Tue Jul 01 03:31:36 EDT 2025 Thu Apr 24 23:05:09 EDT 2025 Wed Jan 22 16:21:53 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | azobenzene photoactuation liquid crystal elastomer biomimetic locomotion |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4794-afa7eeb251bc2b430f0eb67070d6c31f136e99a3e59356df9f207e70f73638cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5945-9671 |
OpenAccessLink | https://zenodo.org/record/3447266 |
PMID | 28561989 |
PQID | 1985534881 |
PQPubID | 1016394 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1904234084 proquest_journals_1985534881 pubmed_primary_28561989 crossref_primary_10_1002_marc_201700224 crossref_citationtrail_10_1002_marc_201700224 wiley_primary_10_1002_marc_201700224_MARC201700224 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Jan |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol Rapid Commun |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 14 2013; 4 2013; 25 2013; 2 2015; 347 1981; 2 1991; 31 2003; 36 2008 2003; 15 2014; 24 2015; 106 2016; 15 2017; 9 2011; 133 2016; 4 2010; 22 2016; 7 2015; 27 2003 2014; 425 2 2017; 56 2013; 52 2009; 9 2009; 8 2017 2010 2012; 22 51 2016; 116 2013 2016; 28 2009; 19 2005; 38 2014; 6 2007; 46 2014; 54 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Zeng H. (e_1_2_7_31_1) 2017 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_22_1 Frutiger D. R. (e_1_2_7_23_1) 2008 e_1_2_7_34_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 Wani O. M. (e_1_2_7_21_1) 2017 |
References_xml | – year: 2017 publication-title: Nat. Commun. – volume: 347 start-page: 982 year: 2015 publication-title: Science – volume: 31 start-page: 625 year: 1991 publication-title: Polym. Eng. Sci. – volume: 133 start-page: 15810 year: 2011 publication-title: J. Am. Chem. Soc. – start-page: 1770 year: 2008 publication-title: IEEE Int. Conf. Rob. Biomimetics – volume: 9 start-page: 2243 year: 2009 publication-title: Nano Lett. – volume: 15 start-page: 647 year: 2016 publication-title: Nat. Mater. – volume: 106 start-page: 111902 year: 2015 publication-title: Appl. Phys. Lett. – volume: 15 start-page: 569 year: 2003 publication-title: Adv. Mater. – volume: 19 start-page: 60 year: 2009 publication-title: J. Mater. Chem. – volume: 52 start-page: 9234 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 782 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 3366 year: 2010 publication-title: Adv. Mater. – volume: 8 start-page: 677 year: 2009 publication-title: Nat. Mater. – volume: 4 start-page: 1689 year: 2016 publication-title: Adv. Opt. Mater. – volume: 46 start-page: 506 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 425 2 start-page: 145 7155 year: 2003 2014 publication-title: Nature J. Mater. Chem. C – volume: 24 start-page: 1251 year: 2014 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 143 year: 2013 publication-title: Found. Trends Databases – volume: 116 start-page: 15089 year: 2016 publication-title: Chem. Rev. – volume: 2 start-page: 317 year: 1981 publication-title: Makromol. Chem., Rapid Commun. – volume: 22 51 start-page: 1361 4117 year: 2010 2012 publication-title: Adv. Mater. Angew. Chem., Int. Ed. – volume: 4 start-page: 1739 year: 2013 publication-title: Nat. Commun. – volume: 54 start-page: 1122 year: 2014 publication-title: Integr. Comp. Biol. – volume: 6 start-page: 229 year: 2014 publication-title: Nat. Chem. – year: 2017 publication-title: Adv. Mater. – volume: 25 start-page: 5880 year: 2013 publication-title: Adv. Mater. – volume: 14 start-page: 1087 year: 2015 publication-title: Nat. Mater. – volume: 7 start-page: 13260 year: 2016 publication-title: Nat. Commun. – volume: 38 start-page: 3469 year: 2005 publication-title: Macromolecules – volume: 36 start-page: 8499 year: 2003 publication-title: Macromolecules – volume: 27 start-page: 3883 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 11975 year: 2016 publication-title: Nat. Commun. – volume: 28 start-page: 9637 year: 2016 publication-title: Adv. Mater. – volume: 56 start-page: 3261 year: 2017 publication-title: Angew. Chem., Int. Ed. – year: 2013 – ident: e_1_2_7_15_2 doi: 10.1039/C4TC01236D – ident: e_1_2_7_15_1 doi: 10.1038/425145a – ident: e_1_2_7_19_1 doi: 10.1038/nchem.1859 – ident: e_1_2_7_13_1 doi: 10.1063/1.4915268 – year: 2017 ident: e_1_2_7_21_1 publication-title: Nat. Commun. – start-page: 1770 year: 2008 ident: e_1_2_7_23_1 publication-title: IEEE Int. Conf. Rob. Biomimetics – ident: e_1_2_7_25_1 doi: 10.1561/2300000023 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201301891 – ident: e_1_2_7_29_1 doi: 10.1002/adom.201600503 – ident: e_1_2_7_33_1 doi: 10.1002/pen.760310902 – ident: e_1_2_7_3_1 doi: 10.1021/acs.chemrev.6b00415 – ident: e_1_2_7_32_1 doi: 10.1021/ma047391c – ident: e_1_2_7_14_1 doi: 10.1002/adma.201603751 – ident: e_1_2_7_36_1 doi: 10.1038/ncomms11975 – ident: e_1_2_7_17_1 doi: 10.1002/adfm.201302568 – ident: e_1_2_7_9_1 doi: 10.1002/marc.1981.030020413 – ident: e_1_2_7_34_1 doi: 10.1021/acsami.6b11550 – ident: e_1_2_7_12_1 doi: 10.1126/science.1261019 – ident: e_1_2_7_35_1 doi: 10.1021/ja2043276 – ident: e_1_2_7_11_1 doi: 10.1038/ncomms2772 – ident: e_1_2_7_20_1 doi: 10.1002/anie.201611325 – ident: e_1_2_7_28_1 doi: 10.1039/B815289F – ident: e_1_2_7_22_1 doi: 10.1021/nl900186w – ident: e_1_2_7_30_1 doi: 10.1093/icb/icu076 – year: 2017 ident: e_1_2_7_31_1 publication-title: Adv. Mater. – ident: e_1_2_7_27_1 doi: 10.1002/anie.201210232 – ident: e_1_2_7_4_1 doi: 10.1002/adma.200904059 – ident: e_1_2_7_10_1 doi: 10.1002/adma.200304552 – ident: e_1_2_7_5_1 doi: 10.1002/anie.200602372 – ident: e_1_2_7_24_1 doi: 10.1038/ncomms13260 – ident: e_1_2_7_18_1 doi: 10.1038/nmat2487 – ident: e_1_2_7_2_1 doi: 10.1038/nmat4569 – ident: e_1_2_7_6_1 doi: 10.1002/9781118680469 – ident: e_1_2_7_8_1 doi: 10.1002/adma.200902879 – ident: e_1_2_7_1_1 doi: 10.1038/nmat4433 – ident: e_1_2_7_8_2 doi: 10.1002/anie.201200726 – ident: e_1_2_7_7_1 doi: 10.1021/ma034921g – ident: e_1_2_7_26_1 doi: 10.1002/adma.201501446 |
SSID | ssj0008402 |
Score | 2.6108682 |
Snippet | Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Artificial muscles azobenzene biomimetic Deformation Elastomers Energy sources Equipment Design Humans Light liquid crystal elastomer Liquid crystals Liquid Crystals - chemistry Locomotion Luminous intensity Materials selection Mimicry Molecular Structure Muscles photoactuation Robotics Robots Skin Skin - chemistry Substrates Surface Properties |
Title | Light‐Driven, Caterpillar‐Inspired Miniature Inching Robot |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201700224 https://www.ncbi.nlm.nih.gov/pubmed/28561989 https://www.proquest.com/docview/1985534881 https://www.proquest.com/docview/1904234084 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hOLSXAn0RXgpSpV4aSOzYTi5IqwUEiOWwLRK3yM5OpBUoi5bdCyd-Ar-RX8JMsgksqEJqb3k4ijP2jL8ZT74B-OEIMyiV2MAlgzyIowgDG0sRoNV5bEMUYRXM6Z3r44v49FJdvviLv-aHaANurBmVvWYFt-5275k0lKkeODXLVMsQGWFO2GJU1H_mjyLvpd7uJI-LnDHdsDaGYm_-8flV6Q3UnEeu1dJztAy26XSdcXK1O5243fzuFZ_j_3zVCnya4VK_U0-kVVjA8jN86Dbl4L7A_hm78Y_3DwdjNpC__K7ldEUuWjSmqyclb9njwO8Ny2FFFuqT6eHwlt8fudHkK1wcHf7pHgez4gtBzqTzgS2sQXK7VeRy4WIZFiE6bchCDHQuo4KkjWlqJapUKj0o0kKEBk1YGEkqnTv5DRbLUYlr4DuFwiAzl9KAoHBWx1qYECOnncFIehA0ws_yGTM5F8i4zmpOZZGxVLJWKh78bNvf1Jwcf2252YxlNtPN2yxKE6UkGa7Ig532NkmTt0psiaMpt-F8oZj668H3eg60rxIJYc40ST0Q1Ui-04es1-l327P1f3loAz7ScVJHfjZhcTKe4hZhoYnbhqXOQe_s93Y1758AQ24BEA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwEB6xcGAv_O0uhN8grcRlA7Ed28kFCRVQgZZDBdLeIjudSAiUotJeOPEIPCNPgidpggpCKy3HOGPFHnvGM-PJNwC_rbMZpIxNYON-FkSMYWAiwQM0KotMiDwsgzndS9W-js7_yjqbkP6FqfAhmoAbSUapr0nAKSB98IYaSlgPlJuly3PoG8xRWW8qYnDce0OQcv5LdeHpfC7njqkatzHkB9P9p8-lD8bmtO1aHj6ni2DrYVc5J7f745Hdzx7fITp-aV5LsDAxTf2jai8twwwWKzDfqivC_YDDDnnyL0_Px0PSkX_8lqGMRapbNHStZwXd2mPf794UNyVeqO-0D0W4_N7ADkY_4fr05KrVDib1F4KMcOcDkxuNzvOWzGbcRiLMQ7RKOyXRV5lgORMKk8QIlImQqp8nOQ816jDXwkl1ZsUvmC0GBa6BbyVyjQRe6lYEuTUqUlyHyKyyGpnwIKi5n2YTcHKqkXGXVrDKPCWupA1XPNhr6O8rWI5PKTfrxUwn4vmQsiSWUjjdxTzYbV47btJtiSlwMCYaShmK3Hg9WK02QfMpHjuzM4kTD3i5lP8YQ9o96rWap_X_6bQD8-2rbiftnF1ebMB31x5XgaBNmB0Nx7jlTKOR3S43_ys6JAOW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkYBLy28JbSFISFxIG9uxnVwqVVtWLXQrtKJSb5GdTKSKKlstuxdOfYQ-Y5-EmWSTdqkQEhyT2Ioz9oy_GU--AXjvCTNonbrIp2URJUJg5BIlI3SmSFyMMm6COaNjc3CSfD7Vp7f-4m_5IfqAG2tGY69ZwS_KaueGNJSpHjg1yzbb0H14kBjSGIZF4xsCKXJf2vNOcrnIGzMdbWMsd5b7L29Ld7DmMnRt9p7hGrhu1G3Kyfft-cxvFz9_I3T8n896AqsLYBrutSvpKdzD-hk8GnT14J7D7hH78deXV_tTtpAfw4HjfEWuWjSlu4c1n9ljGY7O6rOGLTQk28PxrXA88ZPZCzgZfvo2OIgW1ReiglnnI1c5i-R3a-EL6RMVVzF6Y8lElKZQohLKYJY5hTpT2pRVVsnYoo0rq0inC69ewko9qfEVhF6jtMjUpTQhKL0ziZE2RuGNtyhUAFEn_LxYUJNzhYzzvCVVljlLJe-lEsCHvv1FS8rxx5ab3VzmC-X8kYss1VqR5RIBvOsfkzT5rMTVOJlzG04YSmi8Aay3a6B_lUwJdGZpFoBsZvIvY8hHe-NBf_X6Xzq9hYdf94f50eHxlw14TLfTNgq0CSuz6Ry3CBfN_Jtm6f8CQHsCTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light%E2%80%90Driven%2C+Caterpillar%E2%80%90Inspired+Miniature+Inching+Robot&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Zeng%2C+Hao&rft.au=Wani%2C+Owies+M.&rft.au=Wasylczyk%2C+Piotr&rft.au=Priimagi%2C+Arri&rft.date=2018-01-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=39&rft.issue=1&rft_id=info:doi/10.1002%2Fmarc.201700224&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_201700224 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |