Light‐Driven, Caterpillar‐Inspired Miniature Inching Robot
Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli‐responsive actuators that can reproduce the shape‐change of soft bodies of animal...
Saved in:
Published in | Macromolecular rapid communications. Vol. 39; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli‐responsive actuators that can reproduce the shape‐change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge. This paper reports on a miniature inching robot fabricated from a monolithic liquid crystal elastomer film, which upon visible‐light excitation is capable of mimicking caterpillar locomotion on different substrates like a blazed grating and a paper surface. The motion is driven by spatially uniform visible light with relatively low intensity, rendering the robot “human‐friendly,” i.e., operational also on human skin. The design paves the way toward light‐driven, soft, mobile microdevices capable of operating in various environments, including the close proximity of humans.
Soft robotics brings revolutionary possibilities to devising new moving mechanisms, being pertinent to both fundamental and applied sciences. A light‐driven, human‐friendly microrobot is reported that can mimic caterpillar inching locomotion with spatially uniform illumination. The robot is made of liquid crystal elastomer film with engineered molecular alignment distribution, and it can perform an inching gait on various surfaces, including human skin. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1022-1336 1521-3927 1521-3927 |
DOI: | 10.1002/marc.201700224 |