Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications

Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these is...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 48; pp. e1903780 - n/a
Main Authors Zhang, Yuanyuan, Wan, Qijin, Yang, Nianjun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self‐assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined. Synthesis of 2D and 3D porous graphene is reviewed together with their functionalization with hetero‐atoms and other functional materials. Electrochemical applications of these porous graphene are highlighted in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage and conversion. The future research directions and challenges on porous graphene are also discussed and outlined.
AbstractList Abstract Graphene is a 2D sheet of sp 2 bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self‐assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined.
Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self‐assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined.
Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self‐assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined. Synthesis of 2D and 3D porous graphene is reviewed together with their functionalization with hetero‐atoms and other functional materials. Electrochemical applications of these porous graphene are highlighted in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage and conversion. The future research directions and challenges on porous graphene are also discussed and outlined.
Graphene is a 2D sheet of sp bonded carbon atoms and tends to aggregate together, due to the strong π-π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self-assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined.
Author Zhang, Yuanyuan
Yang, Nianjun
Wan, Qijin
Author_xml – sequence: 1
  givenname: Yuanyuan
  surname: Zhang
  fullname: Zhang, Yuanyuan
  email: yyzhang@wit.edu.cn
  organization: Wuhan Institute of Technology
– sequence: 2
  givenname: Qijin
  surname: Wan
  fullname: Wan, Qijin
  organization: Wuhan Institute of Technology
– sequence: 3
  givenname: Nianjun
  orcidid: 0000-0002-5558-2314
  surname: Yang
  fullname: Yang, Nianjun
  email: nianjun.yang@uni-siegen.de
  organization: University of Siegen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31663294$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLAzEUhYMovrcuJeDGha15zCNxV8RWoaL4WA9p5g4dySRjMqPUX29qtYIbV_csvvvBOXto0zoLCB1RMqSEsPPQGDNkhErCc0E20C7NKB9kgsnNdaZkB-2F8EIIpyzJt9EOp1nGmUx20ewBNNgOj8o3ZTUE7Cp877zrA5541c7BwgV-XNhuDqEOZ3jcW93VzipTf6hlOMPKlvjKgO6803Noaq0MHrWtiWEJhAO0VSkT4PD77qPn8dXT5fVgeje5uRxNBzrJJRlAnishZjxLc5WKFEAwAlrHlKlUluUszQRwyaSkrKqqJK2EKvMyBc2AC5XyfXS68rbevfYQuqKpgwZjlIXYp2CckijPuYjoyR_0xfU-lvqiRCIzTmikhitKexeCh6pofd0ovygoKZbrF8v1i_X68eH4W9vPGijX-M_cEZAr4L02sPhHVzzeTqe_8k-z05Os
CitedBy_id crossref_primary_10_1002_adma_202108750
crossref_primary_10_1088_1361_648X_ad39be
crossref_primary_10_1002_adfm_202314282
crossref_primary_10_1016_j_isci_2023_106155
crossref_primary_10_3390_polym13142277
crossref_primary_10_1039_D3TC00963G
crossref_primary_10_1002_smll_202202516
crossref_primary_10_3390_nano12010135
crossref_primary_10_1002_admt_202100207
crossref_primary_10_1016_j_cej_2021_134250
crossref_primary_10_1016_j_electacta_2022_140258
crossref_primary_10_1016_j_cclet_2020_07_025
crossref_primary_10_1016_j_jallcom_2023_168882
crossref_primary_10_1021_acs_chemmater_2c00467
crossref_primary_10_3389_fchem_2023_1308948
crossref_primary_10_3390_chemosensors9060146
crossref_primary_10_1016_j_physb_2023_415099
crossref_primary_10_1016_j_addr_2021_113970
crossref_primary_10_1016_j_colsurfa_2020_125587
crossref_primary_10_1002_adem_202300248
crossref_primary_10_1002_eem2_12611
crossref_primary_10_1016_j_ceramint_2024_04_418
crossref_primary_10_1142_S1793604723400040
crossref_primary_10_1016_j_ceramint_2021_07_186
crossref_primary_10_1021_acs_chemrev_3c00392
crossref_primary_10_1016_j_ultsonch_2022_106208
crossref_primary_10_1002_cnma_202200151
crossref_primary_10_1016_j_tifs_2022_08_011
crossref_primary_10_1039_D3CC01004J
crossref_primary_10_1016_j_jelechem_2020_114169
crossref_primary_10_1016_j_cej_2023_142422
crossref_primary_10_1039_D1TA01267C
crossref_primary_10_1002_mabi_202000432
crossref_primary_10_1088_1361_6528_aba658
crossref_primary_10_3390_pr11051451
crossref_primary_10_1016_j_bios_2020_112722
crossref_primary_10_3390_plants13010113
crossref_primary_10_1002_adfm_202007458
crossref_primary_10_1016_j_carbon_2022_11_009
crossref_primary_10_1021_acsaelm_0c00953
crossref_primary_10_1088_1361_6528_ac0190
crossref_primary_10_1016_j_jelechem_2023_117204
crossref_primary_10_1007_s00604_023_06041_1
crossref_primary_10_1016_j_cis_2021_102550
crossref_primary_10_2139_ssrn_4185378
crossref_primary_10_1016_j_materresbull_2021_111268
crossref_primary_10_1016_j_carbon_2022_01_013
crossref_primary_10_1039_D0CC03745A
crossref_primary_10_1039_D0MH00815J
crossref_primary_10_1016_j_est_2021_103380
crossref_primary_10_1002_smtd_202100621
crossref_primary_10_1021_acsami_1c10242
crossref_primary_10_3390_c9030065
crossref_primary_10_1016_j_microc_2022_108043
crossref_primary_10_1109_JSEN_2023_3236068
crossref_primary_10_1103_PhysRevB_102_174106
crossref_primary_10_12677_HJCET_2023_132013
crossref_primary_10_1016_j_microc_2023_108643
crossref_primary_10_1016_j_pmatsci_2024_101289
crossref_primary_10_1016_j_jhazmat_2023_131893
crossref_primary_10_1016_j_carbon_2023_02_064
crossref_primary_10_1016_j_flatc_2020_100196
crossref_primary_10_1016_j_teac_2021_e00120
crossref_primary_10_1016_j_cej_2021_131846
crossref_primary_10_1039_D0RA05553K
crossref_primary_10_1016_j_cej_2021_131323
crossref_primary_10_1039_D2RA01829B
crossref_primary_10_1002_smll_202400650
crossref_primary_10_1002_smtd_202400856
crossref_primary_10_1039_D1AN01978C
crossref_primary_10_1002_mame_201900813
crossref_primary_10_1007_s12274_022_4244_3
crossref_primary_10_3390_ijms23094745
crossref_primary_10_1016_j_chempr_2020_08_002
crossref_primary_10_7717_peerj_cs_1885
crossref_primary_10_1016_j_ceramint_2021_05_048
crossref_primary_10_1021_acsomega_1c00432
crossref_primary_10_1016_j_ijhydene_2020_12_089
crossref_primary_10_1021_acs_jpcc_2c08699
crossref_primary_10_3390_molecules27248644
crossref_primary_10_1016_j_desal_2022_116144
crossref_primary_10_1016_j_jhazmat_2021_126441
crossref_primary_10_1016_j_electacta_2021_137800
crossref_primary_10_1088_1361_6528_ac9d42
crossref_primary_10_2139_ssrn_4053255
crossref_primary_10_1039_D2TA01442D
crossref_primary_10_1021_jacs_2c06377
crossref_primary_10_1080_10408436_2023_2274900
crossref_primary_10_1016_j_jelechem_2021_115164
crossref_primary_10_1016_j_carbon_2022_04_003
crossref_primary_10_1016_j_matlet_2022_133308
crossref_primary_10_1016_j_matchemphys_2020_123666
crossref_primary_10_1016_j_bios_2021_113206
crossref_primary_10_1016_j_cej_2024_149261
crossref_primary_10_1038_s41598_023_35596_5
crossref_primary_10_3390_nano11010079
crossref_primary_10_1021_acs_nanolett_1c03765
crossref_primary_10_1002_smll_202005255
crossref_primary_10_1039_D3NR06413A
crossref_primary_10_1039_D3RA04153K
crossref_primary_10_1016_j_jallcom_2024_173480
crossref_primary_10_1016_j_molstruc_2023_137102
crossref_primary_10_1021_accountsmr_2c00186
crossref_primary_10_1021_acsami_2c12948
crossref_primary_10_1016_j_microc_2022_107957
crossref_primary_10_1016_j_apsadv_2022_100233
crossref_primary_10_1002_smll_202401767
crossref_primary_10_1016_j_jelechem_2021_115553
crossref_primary_10_1016_j_jcis_2020_03_124
crossref_primary_10_1002_admi_201902190
crossref_primary_10_1007_s12034_023_03078_z
crossref_primary_10_3390_bios13090886
crossref_primary_10_1016_j_apsusc_2020_145720
crossref_primary_10_1016_j_molliq_2023_123662
crossref_primary_10_1016_j_matlet_2022_131765
crossref_primary_10_1039_D0NR04558F
crossref_primary_10_1149_1945_7111_ac2023
crossref_primary_10_1016_j_apsusc_2021_150254
crossref_primary_10_1039_D1TA00765C
crossref_primary_10_1039_D3EN00091E
crossref_primary_10_1016_j_carbon_2020_12_027
crossref_primary_10_1016_j_carbon_2024_118897
crossref_primary_10_1016_j_apsusc_2022_154430
crossref_primary_10_1007_s42823_023_00609_w
crossref_primary_10_1016_S1872_5805_24_60856_5
crossref_primary_10_1021_acsestwater_0c00236
crossref_primary_10_1002_asia_202000747
crossref_primary_10_1002_smll_201905367
crossref_primary_10_1016_j_arabjc_2021_103088
crossref_primary_10_1016_j_jechem_2020_08_035
crossref_primary_10_1002_admi_202100783
crossref_primary_10_1039_D1RA05157A
crossref_primary_10_1016_j_ijhydene_2020_10_040
crossref_primary_10_1149_1945_7111_ac163b
crossref_primary_10_14529_mmph220407
crossref_primary_10_1002_elan_202060355
crossref_primary_10_1016_j_jpowsour_2022_232613
crossref_primary_10_1016_j_carbon_2020_12_034
crossref_primary_10_1021_acsnano_2c00379
crossref_primary_10_3390_catal13050879
crossref_primary_10_1016_j_colsurfa_2023_132178
crossref_primary_10_3389_fbioe_2022_804201
crossref_primary_10_1007_s00604_022_05475_3
crossref_primary_10_1016_j_ijhydene_2022_09_036
crossref_primary_10_1002_adma_202210734
crossref_primary_10_1016_j_apsusc_2021_150553
crossref_primary_10_1039_D3TC04677J
crossref_primary_10_3390_nano10061161
crossref_primary_10_1002_masy_202300099
crossref_primary_10_1016_j_mtbio_2022_100231
Cites_doi 10.1016/j.carbon.2018.12.103
10.1016/j.jpowsour.2016.10.109
10.1039/c1cc11159k
10.1002/anie.201701826
10.1016/j.jelechem.2018.12.039
10.1016/j.matlet.2017.11.120
10.1007/s11581-016-1954-0
10.1002/adfm.201807485
10.1039/C8RA04048F
10.1002/admi.201701548
10.1039/C9NR05202J
10.1021/acsaem.8b02014
10.1016/j.electacta.2018.02.148
10.1016/j.jelechem.2018.01.011
10.1016/j.matchemphys.2017.11.054
10.1002/adma.201900843
10.1016/j.jcou.2019.02.001
10.1016/j.carbon.2018.09.013
10.1002/smll.201902881
10.1016/j.electacta.2017.12.071
10.1007/s00604-018-2846-y
10.1002/adfm.201503726
10.1016/j.carbon.2018.05.055
10.1021/acsami.8b22260
10.1016/j.electacta.2018.09.109
10.1038/s41467-019-09274-y
10.1016/j.snb.2018.10.104
10.1002/aenm.201802238
10.1016/j.colsurfa.2018.12.002
10.1021/acssuschemeng.8b04447
10.1039/C7NR07748C
10.1126/science.aam5852
10.1002/smll.201704227
10.1002/adfm.201805026
10.1007/s10853-018-03247-0
10.1016/j.electacta.2018.10.173
10.1016/j.jallcom.2019.01.052
10.1021/acscatal.7b04091
10.1038/nnano.2010.8
10.3390/s18051456
10.1016/j.apcatb.2018.10.046
10.1002/smll.201800582
10.1016/j.jpowsour.2018.09.050
10.1021/acsnano.7b06263
10.1016/j.carbon.2018.02.072
10.1039/C4NR00005F
10.1016/j.electacta.2019.06.098
10.1186/s11671-018-2602-6
10.1007/s41918-019-00033-7
10.1016/j.aca.2012.12.020
10.1016/j.bios.2015.06.042
10.1016/j.snb.2018.11.079
10.1021/acsami.9b08915
10.1016/j.bios.2019.01.069
10.1016/j.carbon.2018.03.048
10.1039/C8TA04561E
10.1021/acsami.8b22478
10.1007/s00604-017-2588-2
10.1007/s12274-016-1293-5
10.1016/j.nanoen.2018.01.006
10.1016/j.nanoen.2018.02.007
10.1002/smll.201803858
10.1016/j.snb.2019.05.065
10.1039/C6RA23971D
10.1016/j.electacta.2016.06.146
10.1016/S1872-5805(17)60136-7
10.1016/j.microc.2019.02.067
10.1016/j.chempr.2019.02.008
10.1021/acsnano.8b08822
10.1021/acsaem.7b00338
10.1002/smll.201803043
10.1016/j.bios.2017.07.007
10.1021/acs.analchem.8b03764
10.1016/j.jcis.2018.01.045
10.1039/C8CC07744D
10.1039/C8CS00658J
10.1002/adfm.201707013
10.1039/C6RA13651F
10.1016/j.snb.2015.06.035
10.1016/j.jelechem.2019.01.003
10.1016/j.snb.2019.126730
10.1016/j.carbon.2019.01.039
10.1039/C9TA01347D
10.1016/j.cej.2019.01.155
10.1016/j.jpowsour.2016.03.089
10.1039/C9NR02476J
10.1016/j.bios.2018.05.038
10.1126/science.aau5321
10.1039/C9TA00942F
10.1016/j.jelechem.2016.09.050
10.1002/chem.201705445
10.1039/C5RA06196B
10.1016/j.bios.2016.05.002
10.1016/j.cej.2017.10.005
10.1039/C7TA04807F
10.1002/aenm.201702947
10.1021/acs.jpcc.8b05984
10.1002/adfm.201606352
10.1039/c3ta00133d
10.1021/acssuschemeng.7b04884
10.1016/j.ceramint.2018.08.292
10.1021/acssuschemeng.7b01820
10.1016/j.bios.2018.05.003
10.1016/j.snb.2018.10.032
10.1039/C8RA08763F
10.1016/j.snb.2019.126683
10.1002/adfm.201800382
10.1039/C6TA09505D
10.1007/s00604-019-3248-5
10.1039/C3TA13105J
10.1021/es504421y
10.1016/j.ijhydene.2018.06.162
10.1016/j.jpowsour.2018.07.061
10.1021/acsaem.8b01011
10.1002/adma.201704449
10.1016/j.cej.2017.03.049
10.1016/j.talanta.2018.04.027
10.1021/acsami.7b03477
10.1016/j.snb.2019.04.072
10.1016/j.bios.2016.08.015
10.1039/C8EE03403F
10.1002/aenm.201803215
10.1016/j.msec.2019.04.072
10.1016/j.matlet.2018.01.058
10.1002/advs.201900119
10.3390/nano7020040
10.1021/acsami.8b19971
10.1016/j.electacta.2017.01.024
10.1016/j.msec.2018.04.015
10.1016/j.carbon.2016.01.073
10.1021/nl500397y
10.1002/celc.201701148
10.1016/j.jssc.2018.09.026
10.1039/C5NJ03390J
10.1016/j.carbon.2017.05.101
10.1016/j.jelechem.2017.12.046
10.1016/j.electacta.2017.10.137
10.1039/C6TA08427C
10.1016/j.jcis.2017.01.062
10.1016/j.cej.2018.05.139
10.1016/j.jpowsour.2017.10.087
10.1021/acssuschemeng.8b00586
10.1007/s10934-018-0653-9
10.1016/j.carbon.2018.11.053
10.1021/acssuschemeng.8b04467
10.1016/j.bios.2018.08.043
10.1039/C7CS00757D
10.1126/science.aar2009
10.1016/j.carbon.2018.06.035
10.1002/adma.201303115
10.1002/admi.201600137
10.1039/C5TA00158G
10.1002/adma.201501901
10.1002/admi.201701261
10.1016/j.cej.2017.09.088
10.1016/j.snb.2015.01.083
10.1002/adma.201704156
10.1039/C8RA08745H
10.1016/j.jcis.2017.10.022
10.1002/aenm.201901896
10.1021/acsami.7b13822
10.1021/acsami.9b04580
10.1016/j.carbon.2011.12.016
10.1021/nn404444r
10.1039/C8AN00888D
10.1016/j.nanoen.2016.09.040
10.1016/j.surfcoat.2018.12.103
10.1039/C8NR09914F
10.1016/j.carbon.2017.11.037
10.1016/j.ijhydene.2018.04.118
10.1002/adfm.201706961
10.1002/adma.201201680
10.1016/j.cej.2017.02.040
10.1016/j.jpowsour.2019.05.060
10.1016/j.elecom.2016.04.007
10.1016/j.jhazmat.2019.04.021
10.1016/j.jpowsour.2018.04.057
10.1039/C7TA04692H
10.1002/adfm.201804630
10.1016/j.carbon.2019.04.070
10.1016/j.apcatb.2019.04.096
10.1016/j.bios.2019.01.047
10.1016/j.jelechem.2015.09.043
10.1021/acs.analchem.7b01304
10.1021/acsami.8b17908
10.1016/j.inoche.2018.08.018
10.1021/acsami.8b07316
10.1021/acsami.8b19613
10.1039/C7RA10626B
10.1002/elan.201880101
10.1021/acs.analchem.9b00556
10.1039/C8TA07946C
10.1039/C7TA03264A
10.1039/C7CS00904F
10.1039/C8TA09722D
10.1016/j.matdes.2019.107689
10.1039/C5EE03580E
10.1039/C9NR02607J
10.1002/adma.201800696
10.1007/s10853-018-2501-3
10.1038/nmat3001
10.1016/j.aca.2017.03.013
10.1016/j.carbon.2017.11.092
10.1016/j.cej.2017.11.001
10.1016/j.electacta.2018.12.103
10.1002/admi.201601227
10.1016/j.apsusc.2018.12.152
10.1039/C7SE00433H
10.1016/j.jallcom.2018.10.259
10.1039/C7TA05979E
10.1021/acsami.8b19223
10.1016/j.cej.2018.10.223
10.1002/adma.201704609
10.1002/adma.201803588
10.1016/j.jpowsour.2019.03.122
10.1038/ncomms5554
10.1039/C8AN02230E
10.1016/j.carbon.2018.06.052
10.1016/j.cap.2017.11.018
10.1039/C9TA00792J
10.1016/j.jelechem.2018.11.016
10.1016/j.carbon.2017.11.095
10.1021/acsenergylett.7b00229
10.1038/nnano.2015.37
10.1021/ac503234e
10.1016/j.talanta.2017.06.061
10.1039/C7TA01957B
10.1016/j.snb.2016.11.122
10.1002/elan.201600783
10.1016/j.snb.2019.02.105
10.1016/j.electacta.2017.02.059
10.1016/j.cej.2018.11.171
10.1016/j.snb.2017.11.061
10.1039/C8TA05407J
10.1016/j.nanoen.2018.04.063
10.1016/j.jechem.2018.06.002
10.1002/adfm.201801746
10.1039/C7CS00871F
10.1021/acs.nanolett.5b01212
10.1016/j.jpowsour.2018.04.032
10.1021/acsami.6b08719
10.3390/nano8080606
10.1016/j.chempr.2017.01.010
10.1016/j.apsusc.2018.04.185
10.1016/j.bios.2018.03.060
10.1039/C5RA14857J
10.1039/C7QI00574A
10.1002/smll.201803500
10.1016/j.ijhydene.2018.02.039
10.1002/elan.201700057
10.1021/am504276g
10.1002/adfm.201601562
10.1016/j.jpowsour.2018.07.059
10.1039/C7NR05208A
10.1039/C8NJ00652K
10.1002/admi.201600532
10.1016/j.carbon.2018.05.061
10.1186/s40580-017-0123-0
10.1016/j.electacta.2018.09.180
10.1016/j.electacta.2017.11.086
10.1016/j.snb.2017.12.103
10.1016/j.cej.2016.11.130
10.1016/j.jcis.2016.11.008
10.1002/adma.201703185
10.1016/j.msec.2017.04.097
10.1039/C8NR01049H
10.1039/C8EE03014F
10.1016/j.snb.2018.01.215
10.1039/C8DT02324G
10.1002/elan.201800089
10.1149/2.0611810jes
10.1016/j.electacta.2018.10.177
10.1002/anie.201906079
10.3390/mi10020084
10.1016/j.jallcom.2019.04.021
10.1002/admi.201701212
10.1016/j.jelechem.2017.12.059
10.1016/j.electacta.2016.11.113
10.1021/acsami.9b00625
10.1002/aenm.201802869
10.1016/j.snb.2019.02.037
10.1016/j.apsusc.2017.02.074
10.1016/j.carbon.2018.09.079
10.1021/acsami.7b18610
10.1016/j.nanoen.2018.08.075
10.1016/j.carbon.2017.02.010
10.1002/ppsc.201700395
10.1016/j.jpowsour.2019.04.075
10.1016/j.electacta.2018.11.131
10.1016/j.cej.2017.11.020
10.1016/j.micromeso.2017.03.061
10.1021/acsami.7b13836
10.1039/C8NR06666C
10.1021/nn202710s
10.1039/C6RA16703A
10.1016/j.snb.2018.08.036
10.1002/aenm.201901872
10.1016/j.snb.2015.08.094
10.1016/j.apsusc.2018.09.233
10.1016/j.jallcom.2017.12.294
10.1016/j.jelechem.2016.05.036
10.1021/acscatal.7b01983
10.1016/j.electacta.2016.06.136
10.1016/j.electacta.2018.09.082
10.20964/2018.10.22
10.1039/C7CS00787F
10.1016/j.electacta.2016.03.102
10.1016/j.compositesb.2018.11.085
10.1016/j.jallcom.2019.01.157
10.1016/j.snb.2018.02.135
10.1039/C7TA08748A
10.3390/s19040905
10.1039/C8TA02580K
10.1016/j.jelechem.2018.06.043
10.1039/C9NR02780G
10.1016/j.bios.2015.12.029
10.1016/j.electacta.2019.02.051
10.1016/j.electacta.2019.04.132
10.1039/C8CY01328D
10.1088/1361-6528/aac02c
10.1016/j.apsusc.2018.04.163
10.1088/1361-6528/ab0092
10.1021/acsami.8b08489
10.1016/j.electacta.2018.09.092
10.1016/j.carbon.2018.11.032
10.1002/anie.201809315
10.1016/j.electacta.2019.03.049
10.1039/C7TA05237E
10.1016/j.jallcom.2018.11.305
10.1016/j.electacta.2018.09.107
10.1016/j.jallcom.2018.11.288
10.1039/C8TA09188A
10.1016/j.jpowsour.2017.03.030
10.1039/C7TA04384H
10.1016/j.electacta.2018.10.176
10.20964/2018.11.77
ContentType Journal Article
Copyright 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
WIN
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201903780
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Online Library Open Access
PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_201903780
31663294
SMLL201903780
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61701352
– fundername: National Natural Science Foundation of China
  grantid: 61701352
GroupedDBID ---
05W
0R~
123
1L6
1OC
24P
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WIN
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
EJD
FEDTE
GODZA
HVGLF
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4790-e77a88b3657a585ee820ecc85e6a59ddb568e3929912fff45f8ad7d5ec2e38a53
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Fri Aug 16 23:15:22 EDT 2024
Thu Oct 10 18:56:26 EDT 2024
Fri Aug 23 01:08:56 EDT 2024
Sat Sep 28 08:29:47 EDT 2024
Sat Aug 24 01:09:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords functionalization
synthesis
electrochemical applications
porous graphene
Language English
License Attribution-NonCommercial
2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4790-e77a88b3657a585ee820ecc85e6a59ddb568e3929912fff45f8ad7d5ec2e38a53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-5558-2314
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201903780
PMID 31663294
PQID 2318496301
PQPubID 1046358
PageCount 37
ParticipantIDs proquest_miscellaneous_2310657738
proquest_journals_2318496301
crossref_primary_10_1002_smll_201903780
pubmed_primary_31663294
wiley_primary_10_1002_smll_201903780_SMLL201903780
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 170
2019; 291
2018; 205
2019; 11
2019; 10
2019; 13
2019; 12
2017; 87
2019; 15
2017; 89
2016; 782
2019; 19
2016; 30
2016; 781
2019; 283
2019; 281
2019; 287
2019; 288
2019; 165
2018; 450
2017; 968
2016; 317
2018; 217
2018; 332
2018; 335
2019; 26
2018; 214
2018; 334
2017; 78
2019; 29
2016; 40
2019; 835
2019; 832
2019; 833
2012; 24
2010; 5
2019; 31
2019; 30
2018; 349
2016; 201
2017; 372
2017; 494
2011; 5
2017; 258
2019; 186
2012; 50
2016; 6
2018; 110
2016; 3
2018; 116
2018; 113
2019; 48
2017; 56
2016; 212
2018; 96
2019; 295
2016; 26
2019; 298
2016; 8
2016; 9
2019; 296
2019; 297
2018; 403
2019; 55
2019; 54
2019; 58
2016; 101
2016; 222
2017; 231
2018; 89
2017; 356
2017; 116
2014; 5
2014; 2
2017; 32
2017; 121
2017; 242
2017; 488
2014; 6
2017; 247
2015; 5
2015; 3
2017; 27
2017; 22
2017; 23
2019; 302
2019; 784
2019; 427
2017; 29
2019; 425
2019; 305
2019; 780
2017; 337
2017; 10
2019; 775
2019; 779
2018; 53
2017; 349
2017; 228
2018; 57
2017; 317
2019; 91
2018; 165
2013; 1
2015; 74
2013; 764
2014; 26
2019; 327
2018; 45
2013; 7
2018; 44
2018; 290
2018; 43
2018; 42
2017; 312
2018; 49
2019; 563
2018; 47
2018; 46
2018; 6
2018; 8
2018; 292
2018; 2
2018; 5
2018; 1
2015; 87
2014; 14
2019; 311
2018; 30
2019; 318
2018; 739
2017; 320
2019; 431
2018; 35
2019; 792
2019; 7
2018; 185
2018; 29
2018; 28
2019; 9
2019; 6
2019; 5
2019; 2
2019; 102
2019; 465
2018; 24
2018; 18
2018; 512
2015; 757
2018; 516
2018; 12
2018; 10
2018; 14
2018; 13
2017; 5
2017; 7
2018; 122
2018; 121
2017; 2
2018; 360
2017; 4
2018; 127
2018; 129
2015; 220
2018; 809
2011; 10
2018; 808
2019; 360
2019; 364
2017; 9
2019; 243
2017; 405
2018; 133
2015; 49
2018; 810
2018; 139
2018; 259
2015; 211
2018; 134
2018; 137
2018; 257
2019; 359
2019; 475
2018; 263
2018; 262
2015; 15
2018; 143
2018; 140
2018; 261
2018; 260
2018; 823
2018; 269
2015; 10
2019; 269
2019; 149
2019; 147
2017; 174
2019; 144
2019; 145
2019; 142
2019; 143
2018; 275
2015; 27
2018; 390
2018; 399
2018; 398
2017; 98
2011; 47
2019; 130
2019; 254
2016; 68
2019; 131
2019; 374
e_1_2_8_241_1
e_1_2_8_287_1
e_1_2_8_264_1
e_1_2_8_309_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_249_1
e_1_2_8_226_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_290_1
e_1_2_8_324_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_301_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_230_1
e_1_2_8_276_1
e_1_2_8_253_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_291_1
e_1_2_8_238_1
e_1_2_8_215_1
e_1_2_8_299_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_313_1
e_1_2_8_30_1
e_1_2_8_336_1
e_1_2_8_242_1
e_1_2_8_265_1
e_1_2_8_25_1
e_1_2_8_280_1
e_1_2_8_48_1
e_1_2_8_227_1
e_1_2_8_288_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
Cui H. (e_1_2_8_263_1) 2018; 2
e_1_2_8_340_1
e_1_2_8_171_1
e_1_2_8_302_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_325_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_254_1
e_1_2_8_14_1
e_1_2_8_292_1
e_1_2_8_37_1
e_1_2_8_239_1
e_1_2_8_216_1
e_1_2_8_277_1
Yuan Y. (e_1_2_8_139_1) 2019; 11
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_314_1
e_1_2_8_167_1
e_1_2_8_337_1
e_1_2_8_28_1
e_1_2_8_243_1
e_1_2_8_220_1
e_1_2_8_281_1
e_1_2_8_228_1
e_1_2_8_266_1
e_1_2_8_205_1
e_1_2_8_289_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_341_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_303_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_326_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_293_1
e_1_2_8_270_1
e_1_2_8_217_1
e_1_2_8_255_1
e_1_2_8_278_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_330_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_315_1
e_1_2_8_338_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_282_1
e_1_2_8_27_1
e_1_2_8_229_1
e_1_2_8_244_1
e_1_2_8_267_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_342_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_304_1
e_1_2_8_327_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_271_1
e_1_2_8_294_1
e_1_2_8_16_1
e_1_2_8_233_1
e_1_2_8_256_1
e_1_2_8_279_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_331_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
Wu J. (e_1_2_8_218_1) 2016; 3
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_339_1
e_1_2_8_146_1
e_1_2_8_316_1
e_1_2_8_283_1
e_1_2_8_68_1
e_1_2_8_260_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_245_1
e_1_2_8_268_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_320_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_343_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_328_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_305_1
e_1_2_8_19_1
e_1_2_8_295_1
e_1_2_8_109_1
e_1_2_8_272_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_257_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_332_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_317_1
Zhang L. (e_1_2_8_94_1) 2019; 327
e_1_2_8_29_1
e_1_2_8_284_1
e_1_2_8_329_1
e_1_2_8_261_1
e_1_2_8_200_1
e_1_2_8_223_1
Chen X. (e_1_2_8_154_1) 2018; 1
e_1_2_8_246_1
e_1_2_8_269_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_321_1
e_1_2_8_44_1
e_1_2_8_344_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_306_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_318_1
e_1_2_8_273_1
e_1_2_8_296_1
e_1_2_8_250_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_235_1
e_1_2_8_258_1
e_1_2_8_163_1
Li R. (e_1_2_8_187_1) 2017; 5
e_1_2_8_140_1
Rethinasabapathy M. (e_1_2_8_40_1) 2017; 22
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_310_1
e_1_2_8_33_1
e_1_2_8_333_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_262_1
e_1_2_8_307_1
e_1_2_8_285_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_247_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_322_1
e_1_2_8_345_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_319_1
e_1_2_8_251_1
e_1_2_8_297_1
e_1_2_8_274_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_259_1
e_1_2_8_236_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_311_1
e_1_2_8_334_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_240_1
e_1_2_8_286_1
e_1_2_8_308_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_248_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_300_1
e_1_2_8_323_1
e_1_2_8_116_1
e_1_2_8_346_1
e_1_2_8_23_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_252_1
e_1_2_8_275_1
e_1_2_8_298_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_335_1
e_1_2_8_12_1
e_1_2_8_312_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 55
  start-page: 1738
  year: 2019
  publication-title: Chem. Commun.
– volume: 27
  start-page: 4516
  year: 2015
  publication-title: Adv. Mater.
– volume: 6
  start-page: 5458
  year: 2014
  publication-title: Nanoscale
– volume: 2
  start-page: 280
  year: 2018
  publication-title: Sustainable Energy Fuels
– volume: 30
  start-page: 1472
  year: 2018
  publication-title: Electroanalysis
– volume: 247
  start-page: 116
  year: 2017
  publication-title: Microporous Mesoporous Mater.
– volume: 137
  start-page: 458
  year: 2018
  publication-title: Carbon
– volume: 8
  start-page: 606
  year: 2018
  publication-title: Nanomaterials
– volume: 26
  start-page: 5158
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 415
  year: 2018
  publication-title: Nano Energy
– volume: 147
  start-page: 163
  year: 2019
  publication-title: Microchem. J.
– volume: 14
  start-page: 3145
  year: 2014
  publication-title: Nano Lett.
– volume: 1
  start-page: 9409
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 287
  start-page: 209
  year: 2019
  publication-title: Sens. Actuators, B
– volume: 12
  start-page: 289
  year: 2018
  publication-title: ACS Nano
– volume: 7
  start-page: 1451
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 44
  year: 2018
  publication-title: Ceram. Int.
– volume: 78
  start-page: 210
  year: 2017
  publication-title: Mater. Sci. Eng., C
– volume: 8
  start-page: 3579
  year: 2018
  publication-title: ACS Catal.
– volume: 290
  start-page: 616
  year: 2018
  publication-title: Electrochim. Acta
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 32
  start-page: 509
  year: 2017
  publication-title: New Carbon Mater.
– volume: 4
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2019
  publication-title: Nanotechnology
– volume: 2
  start-page: 10
  year: 2018
  publication-title: Small Methods
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 217
  start-page: 104
  year: 2018
  publication-title: Mater. Lett.
– volume: 1
  start-page: 5024
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 327
  start-page: 142
  year: 2019
  publication-title: Carbon
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 403
  start-page: 66
  year: 2018
  publication-title: J. Power Sources
– volume: 68
  start-page: 10
  year: 2016
  publication-title: Electrochem. Commun.
– volume: 228
  start-page: 203
  year: 2017
  publication-title: Electrochim. Acta
– volume: 364
  start-page: 1057
  year: 2019
  publication-title: Science
– volume: 297
  year: 2019
  publication-title: Sens. Actuators, B
– volume: 13
  start-page: 9618
  year: 2018
  publication-title: Int. J. Electrochem. Sci.
– volume: 185
  start-page: 316
  year: 2018
  publication-title: Microchim. Acta
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 317
  start-page: 461
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 30
  start-page: 1
  year: 2018
  publication-title: Electroanalysis
– volume: 281
  start-page: 245
  year: 2019
  publication-title: Sens. Actuators, B
– volume: 320
  start-page: 283
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 390
  start-page: 215
  year: 2018
  publication-title: J. Power Sources
– volume: 563
  start-page: 112
  year: 2019
  publication-title: Colloids Surf. A
– volume: 222
  start-page: 567
  year: 2016
  publication-title: Sens. Actuators, B
– volume: 49
  start-page: 354
  year: 2018
  publication-title: Nano Energy
– volume: 242
  start-page: 728
  year: 2017
  publication-title: Sens. Actuators, B
– volume: 405
  start-page: 308
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 337
  start-page: 65
  year: 2017
  publication-title: J. Power Sources
– volume: 10
  start-page: 1474
  year: 2019
  publication-title: Nat. Commun.
– volume: 335
  start-page: 467
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 259
  start-page: 540
  year: 2018
  publication-title: Sens. Actuators, B
– volume: 335
  start-page: 954
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 5163
  year: 2019
  publication-title: ACS Nano
– volume: 298
  start-page: 321
  year: 2019
  publication-title: Electrochim. Acta
– volume: 87
  start-page: 1638
  year: 2015
  publication-title: Anal. Chem.
– volume: 425
  start-page: 1
  year: 2019
  publication-title: J. Power Sources
– volume: 56
  start-page: 6970
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 7852
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 261
  start-page: 35
  year: 2018
  publication-title: Electrochim. Acta
– volume: 359
  start-page: 801
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 832
  start-page: 275
  year: 2019
  publication-title: J. Electroanal. Chem.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 702
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 6175
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 781
  start-page: 204
  year: 2016
  publication-title: J. Electroanal. Chem.
– volume: 332
  start-page: 260
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 130
  start-page: 276
  year: 2019
  publication-title: Biosens. Bioelectron.
– volume: 810
  start-page: 154
  year: 2018
  publication-title: J. Electroanal. Chem.
– volume: 1
  start-page: 891
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 101
  start-page: 49
  year: 2016
  publication-title: Carbon
– volume: 5
  start-page: 7784
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 149
  start-page: 452
  year: 2019
  publication-title: Carbon
– volume: 9
  start-page: 1270
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 47
  start-page: 2165
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 2093
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 260
  start-page: 944
  year: 2018
  publication-title: Electrochim. Acta
– volume: 42
  start-page: 5634
  year: 2018
  publication-title: New J. Chem.
– volume: 257
  start-page: 1009
  year: 2018
  publication-title: Sens. Actuators, B
– volume: 98
  start-page: 310
  year: 2017
  publication-title: Biosens. Bioelectron.
– volume: 1
  start-page: 5189
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 835
  start-page: 1
  year: 2019
  publication-title: J. Electroanal. Chem.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 89
  start-page: 7166
  year: 2017
  publication-title: Anal. Chem.
– volume: 47
  year: 2018
  publication-title: Dalton Trans.
– volume: 212
  start-page: 147
  year: 2016
  publication-title: Electrochim. Acta
– volume: 89
  start-page: 85
  year: 2017
  publication-title: Biosens. Bioelectron.
– volume: 2
  start-page: 171
  year: 2017
  publication-title: Chem
– volume: 262
  start-page: 180
  year: 2018
  publication-title: Sens. Actuators, B
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 212
  start-page: 171
  year: 2016
  publication-title: Electrochim. Acta
– volume: 201
  start-page: 117
  year: 2016
  publication-title: Electrochim. Acta
– volume: 87
  start-page: 101
  year: 2017
  publication-title: Biosens. Bioelectron.
– volume: 258
  start-page: 485
  year: 2017
  publication-title: Electrochim. Acta
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 205
  start-page: 487
  year: 2018
  publication-title: Mater. Chem. Phys.
– volume: 475
  start-page: 285
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 6700
  year: 2017
  publication-title: ACS Catal.
– volume: 465
  start-page: 625
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 11
  start-page: 9011
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2013
  publication-title: ACS Nano
– volume: 29
  start-page: 1506
  year: 2017
  publication-title: Electroanalysis
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 292
  start-page: 639
  year: 2018
  publication-title: Electrochim. Acta
– volume: 31
  start-page: 159
  year: 2019
  publication-title: J. Energy Chem.
– volume: 18
  start-page: S37
  year: 2018
  publication-title: Curr. Appl. Phys.
– volume: 140
  start-page: 314
  year: 2018
  publication-title: Carbon
– volume: 349
  start-page: 75
  year: 2017
  publication-title: J. Power Sources
– volume: 121
  start-page: 443
  year: 2017
  publication-title: Carbon
– volume: 46
  start-page: 266
  year: 2018
  publication-title: Nano Energy
– volume: 2
  start-page: 332
  year: 2019
  publication-title: Electrochem. Energy Rev.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 45
  start-page: 273
  year: 2018
  publication-title: Nano Energy
– volume: 356
  start-page: 599
  year: 2017
  publication-title: Science
– volume: 116
  start-page: 123
  year: 2018
  publication-title: Biosens. Bioelectron.
– volume: 23
  start-page: 1525
  year: 2017
  publication-title: Ionics
– volume: 784
  start-page: 869
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 363
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 2280
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 4419
  year: 2012
  publication-title: Adv. Mater.
– volume: 5
  start-page: 9848
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 4138
  year: 2019
  publication-title: Nanoscale
– volume: 334
  start-page: 1
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 220
  start-page: 919
  year: 2015
  publication-title: Sens. Actuators, B
– volume: 2
  start-page: 1445
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 359
  start-page: 1668
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 792
  start-page: 50
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 292
  start-page: 568
  year: 2018
  publication-title: Electrochim. Acta
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 4028
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 1371
  year: 2019
  publication-title: Chem
– volume: 349
  start-page: 782
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 174
  start-page: 527
  year: 2017
  publication-title: Talanta
– volume: 54
  start-page: 5658
  year: 2019
  publication-title: J. Mater. Sci.
– volume: 35
  year: 2018
  publication-title: Part. Part. Syst. Charact.
– volume: 145
  start-page: 311
  year: 2019
  publication-title: Carbon
– volume: 231
  start-page: 300
  year: 2017
  publication-title: Electrochim. Acta
– volume: 291
  start-page: 362
  year: 2019
  publication-title: Sens. Actuators, B
– volume: 779
  start-page: 202
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 144
  start-page: 2186
  year: 2019
  publication-title: Analyst
– volume: 399
  start-page: 115
  year: 2018
  publication-title: J. Power Sources
– volume: 281
  start-page: 96
  year: 2019
  publication-title: Sens. Actuators, B
– volume: 14
  year: 2018
  publication-title: Small
– volume: 30
  start-page: 168
  year: 2019
  publication-title: J. CO2 Util.
– volume: 2
  start-page: 1327
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 129
  start-page: 301
  year: 2018
  publication-title: Carbon
– volume: 13
  start-page: 190
  year: 2018
  publication-title: Nanoscale Res. Lett.
– volume: 780
  start-page: 55
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 2
  start-page: 451
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 302
  start-page: 216
  year: 2019
  publication-title: Electrochim. Acta
– volume: 372
  start-page: 286
  year: 2017
  publication-title: J. Power Sources
– volume: 116
  start-page: 223
  year: 2017
  publication-title: Carbon
– volume: 317
  start-page: 10
  year: 2016
  publication-title: J. Power Sources
– volume: 170
  year: 2019
  publication-title: Mater. Des.
– volume: 269
  start-page: 151
  year: 2019
  publication-title: J. Solid State Chem.
– volume: 364
  start-page: 57
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 3
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 739
  start-page: 290
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 3
  start-page: 5402
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 450
  start-page: 372
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 764
  start-page: 53
  year: 2013
  publication-title: Anal. Chim. Acta
– volume: 263
  start-page: 543
  year: 2018
  publication-title: Sens. Actuators, B
– volume: 137
  start-page: 467
  year: 2018
  publication-title: Carbon
– volume: 43
  year: 2018
  publication-title: Int. J. Hydrogen Energy
– volume: 808
  start-page: 321
  year: 2018
  publication-title: J. Electroanal. Chem.
– volume: 12
  start-page: 747
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 305
  year: 2017
  publication-title: Nano Res.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 5
  start-page: 4554
  year: 2014
  publication-title: Nat. Commun.
– volume: 222
  start-page: 1371
  year: 2016
  publication-title: Electrochim. Acta
– volume: 275
  start-page: 78
  year: 2018
  publication-title: Sens. Actuators, B
– volume: 10
  start-page: 84
  year: 2019
  publication-title: Micromachines
– volume: 823
  start-page: 437
  year: 2018
  publication-title: J. Electroanal. Chem.
– volume: 143
  start-page: 610
  year: 2019
  publication-title: Carbon
– volume: 5
  start-page: 619
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 296
  start-page: 165
  year: 2019
  publication-title: Electrochim. Acta
– volume: 295
  start-page: 514
  year: 2019
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 9374
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 283
  start-page: 130
  year: 2019
  publication-title: Sens. Actuators, B
– volume: 19
  start-page: 905
  year: 2019
  publication-title: Sensors
– volume: 129
  start-page: 95
  year: 2018
  publication-title: Carbon
– volume: 121
  start-page: 96
  year: 2018
  publication-title: Biosens. Bioelectron.
– volume: 91
  start-page: 6043
  year: 2019
  publication-title: Anal. Chem.
– volume: 22
  start-page: 1
  year: 2017
  publication-title: Carbon Lett.
– volume: 211
  start-page: 220
  year: 2015
  publication-title: Sens. Actuators, B
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 450
  start-page: 348
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 74
  start-page: 71
  year: 2015
  publication-title: Biosens. Bioelectron.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 254
  start-page: 186
  year: 2019
  publication-title: Appl. Catal., B
– volume: 5
  start-page: 1811
  year: 2018
  publication-title: ChemElectroChem
– volume: 144
  start-page: 713
  year: 2019
  publication-title: Carbon
– volume: 4
  start-page: 2017
  year: 2017
  publication-title: Inorg. Chem. Front.
– volume: 185
  start-page: 51
  year: 2018
  publication-title: Microchim. Acta
– volume: 7
  start-page: 40
  year: 2017
  publication-title: Nanomaterials
– volume: 13
  year: 2018
  publication-title: Int. J. Electrochem. Sci.
– volume: 5
  start-page: 1417
  year: 2017
  publication-title: Microchim. Acta
– volume: 5
  start-page: 8739
  year: 2011
  publication-title: ACS Nano
– volume: 318
  start-page: 460
  year: 2019
  publication-title: Electrochim. Acta
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 292
  start-page: 20
  year: 2018
  publication-title: Electrochim. Acta
– volume: 47
  start-page: 5976
  year: 2011
  publication-title: Chem. Commun.
– volume: 374
  start-page: 195
  year: 2019
  publication-title: J. Hazard. Mater.
– volume: 30
  start-page: 93
  year: 2016
  publication-title: Nano Energy
– volume: 12
  start-page: 2030
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 269
  start-page: 544
  year: 2018
  publication-title: Electrochim. Acta
– volume: 305
  start-page: 175
  year: 2019
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 5373
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 165
  start-page: 10
  year: 2019
  publication-title: Composites, Part B
– volume: 29
  start-page: 1258
  year: 2017
  publication-title: Electroanalysis
– volume: 26
  start-page: 849
  year: 2014
  publication-title: Adv. Mater.
– volume: 295
  start-page: 490
  year: 2019
  publication-title: Electrochim. Acta
– volume: 47
  start-page: 8766
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 186
  start-page: 171
  year: 2019
  publication-title: Microchim. Acta
– volume: 8
  year: 2018
  publication-title: RSC Adv.
– volume: 113
  start-page: 142
  year: 2018
  publication-title: Biosens. Bioelectron.
– volume: 40
  start-page: 6022
  year: 2016
  publication-title: New J. Chem.
– volume: 15
  start-page: 4605
  year: 2015
  publication-title: Nano Lett.
– volume: 110
  start-page: 180
  year: 2018
  publication-title: Biosens. Bioelectron.
– volume: 10
  start-page: 7996
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 516
  start-page: 1
  year: 2018
  publication-title: J. Colloid Interface Sci.
– volume: 96
  start-page: 159
  year: 2018
  publication-title: Inorg. Chem. Commun.
– volume: 102
  start-page: 708
  year: 2019
  publication-title: Mater. Sci. Eng., C
– volume: 6
  start-page: 8437
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 757
  start-page: 235
  year: 2015
  publication-title: J. Electroanal. Chem.
– volume: 9
  start-page: 99
  year: 2019
  publication-title: RSC Adv.
– volume: 312
  start-page: 180
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 139
  start-page: 1117
  year: 2018
  publication-title: Carbon
– volume: 775
  start-page: 1206
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 296
  year: 2019
  publication-title: Sens. Actuators, B
– volume: 214
  start-page: 209
  year: 2018
  publication-title: Mater. Lett.
– volume: 127
  start-page: 449
  year: 2018
  publication-title: Carbon
– volume: 24
  start-page: 3263
  year: 2018
  publication-title: Chem. ‐ Eur. J.
– volume: 288
  start-page: 88
  year: 2019
  publication-title: Sens. Actuators, B
– volume: 7
  start-page: 831
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 784
  start-page: 697
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 10
  start-page: 424
  year: 2011
  publication-title: Nat. Mater.
– volume: 6
  year: 2019
  publication-title: RSC Adv.
– volume: 8
  start-page: 5325
  year: 2018
  publication-title: Catal. Sci. Technol.
– volume: 26
  start-page: 271
  year: 2019
  publication-title: J. Porous Mater.
– volume: 512
  start-page: 379
  year: 2018
  publication-title: J. Colloid Interface Sci.
– volume: 5
  start-page: 190
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 431
  start-page: 114
  year: 2019
  publication-title: J. Power Sources
– volume: 360
  start-page: 199
  year: 2018
  publication-title: Science
– volume: 134
  start-page: 540
  year: 2018
  publication-title: Carbon
– volume: 143
  start-page: 3327
  year: 2018
  publication-title: Analyst
– volume: 165
  start-page: H629
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 398
  start-page: 167
  year: 2018
  publication-title: J. Power Sources
– volume: 833
  start-page: 543
  year: 2019
  publication-title: J. Electroanal. Chem.
– volume: 89
  start-page: 230
  year: 2018
  publication-title: Mater. Sci. Eng., C
– volume: 488
  start-page: 317
  year: 2017
  publication-title: J. Colloid Interface Sci.
– volume: 91
  start-page: 888
  year: 2019
  publication-title: Anal. Chem.
– volume: 494
  start-page: 355
  year: 2017
  publication-title: J. Colloid Interface Sci.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 143
  start-page: 869
  year: 2019
  publication-title: Carbon
– volume: 47
  start-page: 3189
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 67
  year: 2015
  publication-title: Environ. Sci. Technol.
– volume: 311
  start-page: 114
  year: 2019
  publication-title: Electrochim. Acta
– volume: 18
  start-page: 1456
  year: 2018
  publication-title: Sensors
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 139
  start-page: 137
  year: 2018
  publication-title: Carbon
– volume: 390
  start-page: 93
  year: 2018
  publication-title: J. Power Sources
– volume: 185
  start-page: 528
  year: 2018
  publication-title: Talanta
– volume: 782
  start-page: 76
  year: 2016
  publication-title: J. Electroanal. Chem.
– volume: 243
  start-page: 294
  year: 2019
  publication-title: Appl. Catal., B
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  start-page: 29
  year: 2017
  publication-title: Nano Convergence
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 50
  start-page: 1699
  year: 2012
  publication-title: Carbon
– volume: 7
  start-page: 847
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10
  start-page: 459
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 4362
  year: 2019
  publication-title: Nanoscale
– volume: 53
  year: 2018
  publication-title: J. Mater. Sci.
– volume: 809
  start-page: 117
  year: 2018
  publication-title: J. Electroanal. Chem.
– volume: 296
  start-page: 755
  year: 2019
  publication-title: Electrochim. Acta
– volume: 968
  start-page: 21
  year: 2017
  publication-title: Anal. Chim. Acta
– volume: 48
  start-page: 157
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 142
  start-page: 1
  year: 2019
  publication-title: Carbon
– volume: 427
  start-page: 91
  year: 2019
  publication-title: J. Power Sources
– volume: 360
  start-page: 110
  year: 2019
  publication-title: Surf. Coat. Technol.
– volume: 131
  start-page: 200
  year: 2019
  publication-title: Biosens. Bioelectron.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 89
  start-page: 167
  year: 2017
  publication-title: Biosens. Bioelectron.
– volume: 26
  start-page: 577
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 295
  start-page: 615
  year: 2019
  publication-title: Electrochim. Acta
– volume: 295
  start-page: 86
  year: 2019
  publication-title: Sens. Actuators, B
– volume: 47
  start-page: 2680
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 133
  start-page: 369
  year: 2018
  publication-title: Carbon
– ident: e_1_2_8_74_1
  doi: 10.1016/j.carbon.2018.12.103
– ident: e_1_2_8_111_1
  doi: 10.1016/j.jpowsour.2016.10.109
– ident: e_1_2_8_60_1
  doi: 10.1039/c1cc11159k
– ident: e_1_2_8_116_1
  doi: 10.1002/anie.201701826
– ident: e_1_2_8_170_1
  doi: 10.1016/j.jelechem.2018.12.039
– ident: e_1_2_8_247_1
  doi: 10.1016/j.matlet.2017.11.120
– ident: e_1_2_8_199_1
  doi: 10.1007/s11581-016-1954-0
– ident: e_1_2_8_119_1
  doi: 10.1002/adfm.201807485
– ident: e_1_2_8_148_1
  doi: 10.1039/C8RA04048F
– ident: e_1_2_8_145_1
  doi: 10.1002/admi.201701548
– ident: e_1_2_8_260_1
  doi: 10.1039/C9NR05202J
– volume: 1
  start-page: 5189
  year: 2018
  ident: e_1_2_8_154_1
  publication-title: ACS Appl. Energy Mater.
  contributor:
    fullname: Chen X.
– ident: e_1_2_8_338_1
  doi: 10.1021/acsaem.8b02014
– ident: e_1_2_8_120_1
  doi: 10.1016/j.electacta.2018.02.148
– ident: e_1_2_8_160_1
  doi: 10.1016/j.jelechem.2018.01.011
– ident: e_1_2_8_95_1
  doi: 10.1016/j.matchemphys.2017.11.054
– ident: e_1_2_8_121_1
  doi: 10.1002/adma.201900843
– ident: e_1_2_8_289_1
  doi: 10.1016/j.jcou.2019.02.001
– ident: e_1_2_8_61_1
  doi: 10.1016/j.carbon.2018.09.013
– ident: e_1_2_8_336_1
  doi: 10.1002/smll.201902881
– ident: e_1_2_8_131_1
  doi: 10.1016/j.electacta.2017.12.071
– ident: e_1_2_8_69_1
  doi: 10.1007/s00604-018-2846-y
– ident: e_1_2_8_72_1
  doi: 10.1002/adfm.201503726
– ident: e_1_2_8_222_1
  doi: 10.1016/j.carbon.2018.05.055
– ident: e_1_2_8_284_1
  doi: 10.1021/acsami.8b22260
– ident: e_1_2_8_136_1
  doi: 10.1016/j.electacta.2018.09.109
– ident: e_1_2_8_308_1
  doi: 10.1038/s41467-019-09274-y
– volume: 2
  start-page: 10
  year: 2018
  ident: e_1_2_8_263_1
  publication-title: Small Methods
  contributor:
    fullname: Cui H.
– ident: e_1_2_8_195_1
  doi: 10.1016/j.snb.2018.10.104
– volume: 327
  start-page: 142
  year: 2019
  ident: e_1_2_8_94_1
  publication-title: Carbon
  contributor:
    fullname: Zhang L.
– ident: e_1_2_8_294_1
  doi: 10.1002/aenm.201802238
– ident: e_1_2_8_54_1
  doi: 10.1016/j.colsurfa.2018.12.002
– ident: e_1_2_8_130_1
  doi: 10.1021/acssuschemeng.8b04447
– ident: e_1_2_8_203_1
  doi: 10.1039/C7NR07748C
– ident: e_1_2_8_312_1
  doi: 10.1126/science.aam5852
– ident: e_1_2_8_286_1
  doi: 10.1002/smll.201704227
– ident: e_1_2_8_64_1
  doi: 10.1002/adfm.201805026
– ident: e_1_2_8_92_1
  doi: 10.1007/s10853-018-03247-0
– ident: e_1_2_8_277_1
  doi: 10.1016/j.electacta.2018.10.173
– ident: e_1_2_8_314_1
  doi: 10.1016/j.jallcom.2019.01.052
– ident: e_1_2_8_23_1
  doi: 10.1021/acscatal.7b04091
– ident: e_1_2_8_11_1
  doi: 10.1038/nnano.2010.8
– ident: e_1_2_8_211_1
  doi: 10.3390/s18051456
– ident: e_1_2_8_291_1
  doi: 10.1016/j.apcatb.2018.10.046
– ident: e_1_2_8_300_1
  doi: 10.1002/smll.201800582
– ident: e_1_2_8_138_1
  doi: 10.1016/j.jpowsour.2018.09.050
– ident: e_1_2_8_104_1
  doi: 10.1021/acsnano.7b06263
– ident: e_1_2_8_161_1
  doi: 10.1016/j.carbon.2018.02.072
– ident: e_1_2_8_174_1
  doi: 10.1039/C4NR00005F
– ident: e_1_2_8_223_1
  doi: 10.1016/j.electacta.2019.06.098
– ident: e_1_2_8_59_1
  doi: 10.1186/s11671-018-2602-6
– ident: e_1_2_8_44_1
  doi: 10.1007/s41918-019-00033-7
– ident: e_1_2_8_229_1
  doi: 10.1016/j.aca.2012.12.020
– ident: e_1_2_8_80_1
  doi: 10.1016/j.bios.2015.06.042
– ident: e_1_2_8_83_1
  doi: 10.1016/j.snb.2018.11.079
– ident: e_1_2_8_333_1
  doi: 10.1021/acsami.9b08915
– ident: e_1_2_8_232_1
  doi: 10.1016/j.bios.2019.01.069
– ident: e_1_2_8_22_1
  doi: 10.1016/j.carbon.2018.03.048
– ident: e_1_2_8_191_1
  doi: 10.1039/C8TA04561E
– ident: e_1_2_8_235_1
  doi: 10.1021/acsami.8b22478
– ident: e_1_2_8_209_1
  doi: 10.1007/s00604-017-2588-2
– ident: e_1_2_8_244_1
  doi: 10.1007/s12274-016-1293-5
– ident: e_1_2_8_134_1
  doi: 10.1016/j.nanoen.2018.01.006
– ident: e_1_2_8_123_1
  doi: 10.1016/j.nanoen.2018.02.007
– ident: e_1_2_8_35_1
  doi: 10.1002/smll.201803858
– ident: e_1_2_8_239_1
  doi: 10.1016/j.snb.2019.05.065
– ident: e_1_2_8_88_1
  doi: 10.1039/C6RA23971D
– ident: e_1_2_8_47_1
  doi: 10.1016/j.electacta.2016.06.146
– ident: e_1_2_8_261_1
  doi: 10.1016/S1872-5805(17)60136-7
– ident: e_1_2_8_75_1
  doi: 10.1016/j.microc.2019.02.067
– ident: e_1_2_8_20_1
  doi: 10.1016/j.chempr.2019.02.008
– ident: e_1_2_8_315_1
  doi: 10.1021/acsnano.8b08822
– ident: e_1_2_8_295_1
  doi: 10.1021/acsaem.7b00338
– ident: e_1_2_8_337_1
  doi: 10.1002/smll.201803043
– ident: e_1_2_8_226_1
  doi: 10.1016/j.bios.2017.07.007
– ident: e_1_2_8_146_1
  doi: 10.1021/acs.analchem.8b03764
– ident: e_1_2_8_324_1
  doi: 10.1016/j.jcis.2018.01.045
– ident: e_1_2_8_306_1
  doi: 10.1039/C8CC07744D
– ident: e_1_2_8_5_1
  doi: 10.1039/C8CS00658J
– ident: e_1_2_8_158_1
  doi: 10.1002/adfm.201707013
– ident: e_1_2_8_248_1
  doi: 10.1039/C6RA13651F
– ident: e_1_2_8_173_1
  doi: 10.1016/j.snb.2015.06.035
– ident: e_1_2_8_176_1
  doi: 10.1016/j.jelechem.2019.01.003
– ident: e_1_2_8_241_1
  doi: 10.1016/j.snb.2019.126730
– ident: e_1_2_8_252_1
  doi: 10.1016/j.carbon.2019.01.039
– ident: e_1_2_8_283_1
  doi: 10.1039/C9TA01347D
– ident: e_1_2_8_326_1
  doi: 10.1016/j.cej.2019.01.155
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jpowsour.2016.03.089
– ident: e_1_2_8_329_1
  doi: 10.1039/C9NR02476J
– ident: e_1_2_8_73_1
  doi: 10.1016/j.bios.2018.05.038
– ident: e_1_2_8_12_1
  doi: 10.1126/science.aau5321
– ident: e_1_2_8_81_1
  doi: 10.1039/C9TA00942F
– volume: 11
  start-page: 4138
  year: 2019
  ident: e_1_2_8_139_1
  publication-title: Nanoscale
  contributor:
    fullname: Yuan Y.
– ident: e_1_2_8_188_1
  doi: 10.1016/j.jelechem.2016.09.050
– ident: e_1_2_8_303_1
  doi: 10.1002/chem.201705445
– ident: e_1_2_8_175_1
  doi: 10.1039/C5RA06196B
– ident: e_1_2_8_41_1
  doi: 10.1016/j.bios.2016.05.002
– ident: e_1_2_8_82_1
  doi: 10.1016/j.cej.2017.10.005
– ident: e_1_2_8_346_1
  doi: 10.1039/C7TA04807F
– ident: e_1_2_8_328_1
  doi: 10.1002/aenm.201702947
– ident: e_1_2_8_107_1
  doi: 10.1021/acs.jpcc.8b05984
– ident: e_1_2_8_280_1
  doi: 10.1002/adfm.201606352
– ident: e_1_2_8_52_1
  doi: 10.1039/c3ta00133d
– ident: e_1_2_8_169_1
  doi: 10.1021/acssuschemeng.7b04884
– ident: e_1_2_8_302_1
  doi: 10.1016/j.ceramint.2018.08.292
– ident: e_1_2_8_270_1
  doi: 10.1021/acssuschemeng.7b01820
– ident: e_1_2_8_236_1
  doi: 10.1016/j.bios.2018.05.003
– ident: e_1_2_8_220_1
  doi: 10.1016/j.snb.2018.10.032
– ident: e_1_2_8_132_1
  doi: 10.1039/C8RA08763F
– ident: e_1_2_8_234_1
  doi: 10.1016/j.snb.2019.126683
– ident: e_1_2_8_50_1
  doi: 10.1002/adfm.201800382
– ident: e_1_2_8_339_1
  doi: 10.1039/C6TA09505D
– ident: e_1_2_8_4_1
  doi: 10.1007/s00604-019-3248-5
– ident: e_1_2_8_79_1
  doi: 10.1039/C3TA13105J
– ident: e_1_2_8_45_1
  doi: 10.1021/es504421y
– ident: e_1_2_8_105_1
  doi: 10.1021/acssuschemeng.7b04884
– ident: e_1_2_8_243_1
  doi: 10.1016/j.ijhydene.2018.06.162
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jpowsour.2018.07.061
– ident: e_1_2_8_97_1
  doi: 10.1021/acsaem.8b01011
– ident: e_1_2_8_297_1
  doi: 10.1002/adma.201704449
– ident: e_1_2_8_53_1
  doi: 10.1016/j.cej.2017.03.049
– ident: e_1_2_8_90_1
  doi: 10.1016/j.talanta.2018.04.027
– ident: e_1_2_8_159_1
  doi: 10.1021/acsami.7b03477
– ident: e_1_2_8_163_1
  doi: 10.1016/j.snb.2019.04.072
– ident: e_1_2_8_198_1
  doi: 10.1016/j.bios.2016.08.015
– ident: e_1_2_8_290_1
  doi: 10.1039/C8EE03403F
– ident: e_1_2_8_322_1
  doi: 10.1002/aenm.201803215
– ident: e_1_2_8_205_1
  doi: 10.1016/j.msec.2019.04.072
– ident: e_1_2_8_157_1
  doi: 10.1016/j.matlet.2018.01.058
– ident: e_1_2_8_108_1
  doi: 10.1002/advs.201900119
– ident: e_1_2_8_165_1
  doi: 10.3390/nano7020040
– ident: e_1_2_8_271_1
  doi: 10.1021/acsami.8b19971
– ident: e_1_2_8_242_1
  doi: 10.1016/j.electacta.2017.01.024
– ident: e_1_2_8_182_1
  doi: 10.1016/j.msec.2018.04.015
– ident: e_1_2_8_115_1
  doi: 10.1016/j.carbon.2016.01.073
– ident: e_1_2_8_76_1
  doi: 10.1021/nl500397y
– ident: e_1_2_8_267_1
  doi: 10.1002/celc.201701148
– ident: e_1_2_8_87_1
  doi: 10.1016/j.jssc.2018.09.026
– ident: e_1_2_8_122_1
  doi: 10.1039/C5NJ03390J
– ident: e_1_2_8_62_1
  doi: 10.1016/j.carbon.2017.05.101
– ident: e_1_2_8_299_1
  doi: 10.1016/j.jelechem.2017.12.046
– ident: e_1_2_8_141_1
  doi: 10.1016/j.electacta.2017.10.137
– ident: e_1_2_8_127_1
  doi: 10.1039/C6TA08427C
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jcis.2017.01.062
– ident: e_1_2_8_341_1
  doi: 10.1016/j.cej.2018.05.139
– ident: e_1_2_8_109_1
  doi: 10.1016/j.jpowsour.2017.10.087
– ident: e_1_2_8_128_1
  doi: 10.1021/acssuschemeng.8b00586
– ident: e_1_2_8_85_1
  doi: 10.1007/s10934-018-0653-9
– ident: e_1_2_8_39_1
  doi: 10.1016/j.carbon.2018.11.053
– ident: e_1_2_8_310_1
  doi: 10.1021/acssuschemeng.8b04467
– ident: e_1_2_8_233_1
  doi: 10.1016/j.bios.2018.08.043
– ident: e_1_2_8_6_1
  doi: 10.1039/C7CS00757D
– ident: e_1_2_8_65_1
  doi: 10.1126/science.aar2009
– ident: e_1_2_8_325_1
  doi: 10.1016/j.carbon.2018.06.035
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.201303115
– ident: e_1_2_8_24_1
  doi: 10.1002/admi.201600137
– ident: e_1_2_8_273_1
  doi: 10.1039/C5TA00158G
– ident: e_1_2_8_71_1
  doi: 10.1002/adma.201501901
– ident: e_1_2_8_309_1
  doi: 10.1002/admi.201701261
– ident: e_1_2_8_323_1
  doi: 10.1016/j.cej.2017.09.088
– ident: e_1_2_8_215_1
  doi: 10.1016/j.snb.2015.01.083
– ident: e_1_2_8_282_1
  doi: 10.1002/adma.201704156
– ident: e_1_2_8_77_1
  doi: 10.1039/C8RA08745H
– ident: e_1_2_8_185_1
  doi: 10.1016/j.jcis.2017.10.022
– volume: 3
  start-page: 1600319
  year: 2016
  ident: e_1_2_8_218_1
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Wu J.
– ident: e_1_2_8_335_1
  doi: 10.1002/aenm.201901896
– ident: e_1_2_8_287_1
  doi: 10.1021/acsami.7b13822
– ident: e_1_2_8_293_1
  doi: 10.1021/acsami.9b04580
– ident: e_1_2_8_51_1
  doi: 10.1016/j.carbon.2011.12.016
– ident: e_1_2_8_275_1
  doi: 10.1021/nn404444r
– ident: e_1_2_8_190_1
  doi: 10.1039/C8AN00888D
– ident: e_1_2_8_272_1
  doi: 10.1016/j.nanoen.2016.09.040
– ident: e_1_2_8_321_1
  doi: 10.1016/j.surfcoat.2018.12.103
– ident: e_1_2_8_86_1
  doi: 10.1039/C8NR09914F
– ident: e_1_2_8_70_1
  doi: 10.1016/j.carbon.2017.11.037
– ident: e_1_2_8_251_1
  doi: 10.1016/j.ijhydene.2018.04.118
– ident: e_1_2_8_144_1
  doi: 10.1002/adfm.201706961
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.201201680
– ident: e_1_2_8_150_1
  doi: 10.1016/j.cej.2017.02.040
– ident: e_1_2_8_91_1
  doi: 10.1016/j.jpowsour.2019.05.060
– ident: e_1_2_8_228_1
  doi: 10.1016/j.elecom.2016.04.007
– ident: e_1_2_8_66_1
  doi: 10.1016/j.jhazmat.2019.04.021
– ident: e_1_2_8_110_1
  doi: 10.1016/j.jpowsour.2018.04.057
– ident: e_1_2_8_31_1
  doi: 10.1039/C7TA04692H
– ident: e_1_2_8_151_1
  doi: 10.1002/adfm.201804630
– ident: e_1_2_8_68_1
  doi: 10.1016/j.carbon.2019.04.070
– ident: e_1_2_8_288_1
  doi: 10.1016/j.apcatb.2019.04.096
– ident: e_1_2_8_2_1
  doi: 10.1016/j.bios.2019.01.047
– ident: e_1_2_8_225_1
  doi: 10.1016/j.jelechem.2015.09.043
– ident: e_1_2_8_224_1
  doi: 10.1021/acs.analchem.7b01304
– ident: e_1_2_8_298_1
  doi: 10.1021/acsami.8b17908
– ident: e_1_2_8_117_1
  doi: 10.1016/j.inoche.2018.08.018
– ident: e_1_2_8_319_1
  doi: 10.1021/acsami.8b07316
– ident: e_1_2_8_313_1
  doi: 10.1021/acsami.8b19613
– ident: e_1_2_8_101_1
  doi: 10.1039/C7RA10626B
– ident: e_1_2_8_178_1
  doi: 10.1002/elan.201880101
– ident: e_1_2_8_237_1
  doi: 10.1021/acs.analchem.9b00556
– ident: e_1_2_8_137_1
  doi: 10.1039/C8TA07946C
– ident: e_1_2_8_112_1
  doi: 10.1039/C7TA03264A
– ident: e_1_2_8_28_1
  doi: 10.1039/C7CS00904F
– ident: e_1_2_8_253_1
  doi: 10.1039/C8TA09722D
– ident: e_1_2_8_93_1
  doi: 10.1016/j.matdes.2019.107689
– ident: e_1_2_8_8_1
  doi: 10.1039/C5EE03580E
– ident: e_1_2_8_330_1
  doi: 10.1039/C9NR02607J
– ident: e_1_2_8_3_1
  doi: 10.1002/adma.201800696
– ident: e_1_2_8_56_1
  doi: 10.1007/s10853-018-2501-3
– ident: e_1_2_8_84_1
  doi: 10.1038/nmat3001
– ident: e_1_2_8_168_1
  doi: 10.1016/j.aca.2017.03.013
– ident: e_1_2_8_162_1
  doi: 10.1016/j.carbon.2017.11.092
– ident: e_1_2_8_301_1
  doi: 10.1016/j.cej.2017.11.001
– ident: e_1_2_8_140_1
  doi: 10.1016/j.electacta.2018.12.103
– ident: e_1_2_8_255_1
  doi: 10.1002/admi.201601227
– ident: e_1_2_8_106_1
  doi: 10.1016/j.apsusc.2018.12.152
– ident: e_1_2_8_89_1
  doi: 10.1039/C7SE00433H
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jallcom.2018.10.259
– ident: e_1_2_8_153_1
  doi: 10.1039/C7TA05979E
– ident: e_1_2_8_345_1
  doi: 10.1021/acsami.8b19223
– ident: e_1_2_8_149_1
  doi: 10.1016/j.cej.2018.10.223
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.201704609
– ident: e_1_2_8_245_1
  doi: 10.1002/adma.201803588
– ident: e_1_2_8_331_1
  doi: 10.1016/j.jpowsour.2019.03.122
– ident: e_1_2_8_19_1
  doi: 10.1038/ncomms5554
– ident: e_1_2_8_207_1
  doi: 10.1039/C8AN02230E
– ident: e_1_2_8_246_1
  doi: 10.1016/j.carbon.2018.06.052
– ident: e_1_2_8_304_1
  doi: 10.1016/j.cap.2017.11.018
– ident: e_1_2_8_63_1
  doi: 10.1039/C9TA00792J
– ident: e_1_2_8_201_1
  doi: 10.1016/j.jelechem.2018.11.016
– ident: e_1_2_8_13_1
  doi: 10.1016/j.carbon.2017.11.095
– ident: e_1_2_8_276_1
  doi: 10.1021/acsenergylett.7b00229
– ident: e_1_2_8_58_1
  doi: 10.1038/nnano.2015.37
– ident: e_1_2_8_213_1
  doi: 10.1021/ac503234e
– ident: e_1_2_8_227_1
  doi: 10.1016/j.talanta.2017.06.061
– ident: e_1_2_8_118_1
  doi: 10.1039/C7TA01957B
– ident: e_1_2_8_202_1
  doi: 10.1016/j.snb.2016.11.122
– ident: e_1_2_8_210_1
  doi: 10.1002/elan.201600783
– ident: e_1_2_8_231_1
  doi: 10.1016/j.snb.2019.02.105
– ident: e_1_2_8_230_1
  doi: 10.1016/j.electacta.2017.02.059
– ident: e_1_2_8_103_1
  doi: 10.1016/j.cej.2018.11.171
– ident: e_1_2_8_183_1
  doi: 10.1016/j.snb.2017.11.061
– ident: e_1_2_8_279_1
  doi: 10.1039/C8TA05407J
– ident: e_1_2_8_135_1
  doi: 10.1016/j.nanoen.2018.04.063
– ident: e_1_2_8_320_1
  doi: 10.1016/j.jechem.2018.06.002
– ident: e_1_2_8_332_1
  doi: 10.1002/adfm.201801746
– ident: e_1_2_8_21_1
  doi: 10.1039/C7CS00871F
– ident: e_1_2_8_46_1
  doi: 10.1021/acs.nanolett.5b01212
– ident: e_1_2_8_102_1
  doi: 10.1016/j.jpowsour.2018.04.032
– ident: e_1_2_8_266_1
  doi: 10.1021/acsami.6b08719
– ident: e_1_2_8_318_1
  doi: 10.3390/nano8080606
– ident: e_1_2_8_30_1
  doi: 10.1016/j.chempr.2017.01.010
– ident: e_1_2_8_217_1
  doi: 10.1016/j.apsusc.2018.04.185
– ident: e_1_2_8_43_1
  doi: 10.1016/j.bios.2018.03.060
– ident: e_1_2_8_214_1
  doi: 10.1039/C5RA14857J
– ident: e_1_2_8_99_1
  doi: 10.1039/C7QI00574A
– ident: e_1_2_8_285_1
  doi: 10.1002/smll.201803500
– ident: e_1_2_8_281_1
  doi: 10.1016/j.ijhydene.2018.02.039
– ident: e_1_2_8_164_1
  doi: 10.1002/elan.201700057
– ident: e_1_2_8_181_1
  doi: 10.1021/am504276g
– ident: e_1_2_8_216_1
  doi: 10.1002/adfm.201601562
– ident: e_1_2_8_152_1
  doi: 10.1016/j.jpowsour.2018.07.059
– ident: e_1_2_8_259_1
  doi: 10.1039/C7NR05208A
– ident: e_1_2_8_34_1
  doi: 10.1039/C8NJ00652K
– ident: e_1_2_8_274_1
  doi: 10.1002/admi.201600532
– ident: e_1_2_8_264_1
  doi: 10.1016/j.carbon.2018.05.061
– ident: e_1_2_8_32_1
  doi: 10.1186/s40580-017-0123-0
– ident: e_1_2_8_142_1
  doi: 10.1016/j.electacta.2018.09.180
– ident: e_1_2_8_343_1
  doi: 10.1016/j.electacta.2017.11.086
– ident: e_1_2_8_172_1
  doi: 10.1016/j.snb.2017.12.103
– ident: e_1_2_8_114_1
  doi: 10.1016/j.cej.2016.11.130
– ident: e_1_2_8_100_1
  doi: 10.1016/j.jcis.2016.11.008
– ident: e_1_2_8_124_1
  doi: 10.1002/adma.201703185
– ident: e_1_2_8_200_1
  doi: 10.1016/j.msec.2017.04.097
– ident: e_1_2_8_268_1
  doi: 10.1039/C8NR01049H
– ident: e_1_2_8_36_1
  doi: 10.1039/C8EE03014F
– ident: e_1_2_8_208_1
  doi: 10.1016/j.snb.2018.01.215
– ident: e_1_2_8_269_1
  doi: 10.1039/C8DT02324G
– ident: e_1_2_8_67_1
  doi: 10.1002/elan.201800089
– ident: e_1_2_8_184_1
  doi: 10.1149/2.0611810jes
– ident: e_1_2_8_196_1
  doi: 10.1016/j.electacta.2018.10.177
– ident: e_1_2_8_292_1
  doi: 10.1002/anie.201906079
– ident: e_1_2_8_189_1
  doi: 10.3390/mi10020084
– ident: e_1_2_8_204_1
  doi: 10.1016/j.jallcom.2019.04.021
– ident: e_1_2_8_33_1
  doi: 10.1002/admi.201701212
– ident: e_1_2_8_179_1
  doi: 10.1016/j.jelechem.2017.12.059
– ident: e_1_2_8_167_1
  doi: 10.1016/j.electacta.2016.11.113
– ident: e_1_2_8_240_1
  doi: 10.1021/acsami.9b00625
– ident: e_1_2_8_9_1
  doi: 10.1002/aenm.201802869
– ident: e_1_2_8_206_1
  doi: 10.1016/j.snb.2019.02.037
– ident: e_1_2_8_340_1
  doi: 10.1016/j.apsusc.2017.02.074
– ident: e_1_2_8_250_1
  doi: 10.1016/j.carbon.2018.09.079
– ident: e_1_2_8_305_1
  doi: 10.1021/acsami.7b18610
– ident: e_1_2_8_17_1
  doi: 10.1016/j.nanoen.2018.08.075
– ident: e_1_2_8_25_1
  doi: 10.1016/j.carbon.2017.02.010
– ident: e_1_2_8_96_1
  doi: 10.1002/ppsc.201700395
– ident: e_1_2_8_258_1
  doi: 10.1016/j.jpowsour.2019.04.075
– ident: e_1_2_8_16_1
  doi: 10.1016/j.electacta.2018.11.131
– ident: e_1_2_8_37_1
  doi: 10.1016/j.cej.2017.11.020
– ident: e_1_2_8_57_1
  doi: 10.1016/j.micromeso.2017.03.061
– ident: e_1_2_8_262_1
  doi: 10.1021/acsami.7b13836
– ident: e_1_2_8_316_1
  doi: 10.1039/C8NR06666C
– ident: e_1_2_8_143_1
  doi: 10.1016/j.cap.2017.11.018
– ident: e_1_2_8_10_1
  doi: 10.1021/nn202710s
– ident: e_1_2_8_49_1
  doi: 10.1039/C6RA16703A
– ident: e_1_2_8_219_1
  doi: 10.1016/j.snb.2018.08.036
– ident: e_1_2_8_334_1
  doi: 10.1002/aenm.201901872
– ident: e_1_2_8_194_1
  doi: 10.1016/j.snb.2015.08.094
– ident: e_1_2_8_221_1
  doi: 10.1016/j.apsusc.2018.09.233
– ident: e_1_2_8_78_1
  doi: 10.1016/j.jallcom.2017.12.294
– ident: e_1_2_8_193_1
  doi: 10.1016/j.jelechem.2016.05.036
– ident: e_1_2_8_257_1
  doi: 10.1021/acscatal.7b01983
– ident: e_1_2_8_166_1
  doi: 10.1016/j.electacta.2016.06.136
– volume: 5
  start-page: 1417
  year: 2017
  ident: e_1_2_8_187_1
  publication-title: Microchim. Acta
  contributor:
    fullname: Li R.
– ident: e_1_2_8_129_1
  doi: 10.1016/j.electacta.2018.09.082
– ident: e_1_2_8_186_1
  doi: 10.20964/2018.10.22
– ident: e_1_2_8_7_1
  doi: 10.1039/C7CS00787F
– ident: e_1_2_8_192_1
  doi: 10.1016/j.electacta.2016.03.102
– ident: e_1_2_8_38_1
  doi: 10.1016/j.compositesb.2018.11.085
– ident: e_1_2_8_311_1
  doi: 10.1016/j.jallcom.2019.01.157
– ident: e_1_2_8_197_1
  doi: 10.1016/j.snb.2018.02.135
– ident: e_1_2_8_1_1
  doi: 10.1039/C7TA08748A
– ident: e_1_2_8_212_1
  doi: 10.3390/s19040905
– ident: e_1_2_8_296_1
  doi: 10.1039/C8TA02580K
– ident: e_1_2_8_180_1
  doi: 10.1016/j.jelechem.2018.06.043
– ident: e_1_2_8_238_1
  doi: 10.1039/C9NR02780G
– volume: 22
  start-page: 1
  year: 2017
  ident: e_1_2_8_40_1
  publication-title: Carbon Lett.
  contributor:
    fullname: Rethinasabapathy M.
– ident: e_1_2_8_42_1
  doi: 10.1016/j.bios.2015.12.029
– ident: e_1_2_8_125_1
  doi: 10.1016/j.electacta.2019.02.051
– ident: e_1_2_8_147_1
  doi: 10.1016/j.electacta.2019.04.132
– ident: e_1_2_8_254_1
  doi: 10.1039/C8CY01328D
– ident: e_1_2_8_133_1
  doi: 10.1088/1361-6528/aac02c
– ident: e_1_2_8_256_1
  doi: 10.1016/j.apsusc.2018.04.163
– ident: e_1_2_8_177_1
  doi: 10.1088/1361-6528/ab0092
– ident: e_1_2_8_344_1
  doi: 10.1021/acsami.8b08489
– ident: e_1_2_8_98_1
  doi: 10.1016/j.electacta.2018.09.092
– ident: e_1_2_8_317_1
  doi: 10.1016/j.carbon.2018.11.032
– ident: e_1_2_8_278_1
  doi: 10.1002/anie.201809315
– ident: e_1_2_8_156_1
  doi: 10.1016/j.electacta.2019.03.049
– ident: e_1_2_8_113_1
  doi: 10.1039/C7TA05237E
– ident: e_1_2_8_265_1
  doi: 10.1039/C7TA01957B
– ident: e_1_2_8_55_1
  doi: 10.1016/j.jallcom.2018.11.305
– ident: e_1_2_8_342_1
  doi: 10.1016/j.electacta.2018.09.107
– ident: e_1_2_8_307_1
  doi: 10.1016/j.jallcom.2018.11.288
– ident: e_1_2_8_327_1
  doi: 10.1039/C8TA09188A
– ident: e_1_2_8_126_1
  doi: 10.1016/j.jpowsour.2017.03.030
– ident: e_1_2_8_155_1
  doi: 10.1039/C7TA04384H
– ident: e_1_2_8_171_1
  doi: 10.1016/j.electacta.2018.10.176
– ident: e_1_2_8_249_1
  doi: 10.20964/2018.11.77
SSID ssj0031247
Score 2.6661494
SecondaryResourceType review_article
Snippet Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction between...
Graphene is a 2D sheet of sp bonded carbon atoms and tends to aggregate together, due to the strong π-π stacking and van der Waals attraction between different...
Abstract Graphene is a 2D sheet of sp 2 bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e1903780
SubjectTerms Bonding strength
Chemical bonds
Composite materials
electrochemical applications
Energy storage
functionalization
Graphene
Mass transfer
Nanotechnology
porous graphene
Synthesis
Title Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201903780
https://www.ncbi.nlm.nih.gov/pubmed/31663294
https://www.proquest.com/docview/2318496301
https://search.proquest.com/docview/2310657738
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RnuBQoC00EKKtVIlLnTreXXvNLUJNoyqpKtpIuVn7lCqog-rkQH99Z72Om8ABCU5ey155vLMz8-3rG4ATJR11aawjaoSLmMxVJGTqolwwrVPqhKmzN0yv0vGMXc75fOMUf-CHaCfcvGXU_tobuFTV2TNpaHX_wy8dYECjmfCD9gFePSr61vJHUQxedXYVjFmRJ95aszbGydl29e2o9AfU3EaudegZvQa5FjrsOPneXy1VXz_-xuf4P3_1BvYaXEqGoSO9hRe23IdXG2yFB6AQYmKIIsOwbaAiC0euFw-LVUUuPO01es0v5OZXiZCyuqtOyQhDZphpbM56nhJZGnIeEu_ohqmADDeW0A9hNjq__TqOmhQNkWZZHkc2y6QQiqY8kzjwsBYBBXYKLKWS58YongrrIVg-SJxzjDshTWa41YmlQnL6DnbLRWmPgBjBuZaIQLRFx6KkdHlscm1srhjCFtaBz2sVFT8DE0cROJeTwrda0bZaB7prDRaNRVYF4ljB0NvEgw4ct4_RlvwCiSwtNpZ_BxFZllHRgfdB8-2n6ACxWeLFSGr9_UWG4mY6mbR3H_6l0kd46cvh4GMXdpcPK_sJEdBS9WAnYde9uq8_AfeIACU
link.rule.ids 315,783,787,1378,11576,27938,27939,46066,46308,46490,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4heqA90EJ5hFcXCakXDI7Xa697iyghpUlUFZC4WfuUqrYOwskBfj2zXttN2gMSvfkpr3d25vv29Q3AkRSW2iRUAdXcBrHIZMBFYoOMx0ol1HJdZW8YjZPBTXx5y5rVhG4vjNeHaAfcnGdU8do5uBuQPv2jGlr-_uXmDhDRaMqx1_4KfZ66JAafv7cKUhThq8qvgqgVOOmtRrcxjE4X31_EpX_I5iJ3rcCn_xZkU2y_5uTnyWwqT9TjX4qO__Vf72C1pqak59vSGiyZYh3ezAkWvgeJLBNRivT8yoGSTCz5NrmfzEpy4ZSvMXB-IlcPBbLK8kd5TPqImn6wsd7ueUxEocm5z72jarEC0pubRd-Am_759dkgqLM0BCpOszAwaSo4lzRhqcC-hzHIKbBd4FEiWKa1ZAk3joVl3chaGzPLhU41MyoylAtGN2G5mBRmG4jmjCmBJEQZjC1SCJuFOlPaZDJG5hJ34GNjo_zOi3HkXnY5yl2t5W2tdWCvMWFeO2WZI5XlMQacsNuBw_Y2upObIxGFwcpyzyApS1PKO7DlTd9-inaRnkWuGFFlwGfKkF-NhsP2bOclL32AlcH1aJgPv4y_7sJrd93vg9yD5en9zOwjIZrKg6rJPwHojANo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4hKqFyaMuzaWlZJKReMDjeXXvdW9QQQgkIFZC4WfuUUFsH4eTQ_vrOeh03aQ9IcPNTXu_szPft6xuAfSUddWmsI2qEi5jMVSRk6qJcMK1T6oSpszecX6TDG_b1lt_O7eIP-hDtgJv3jDpeewe_N-7or2ho9fOHnzpAQKOZwE77C5bS2C_q6n9rBaQooledXgVBK_LKWzPZxjg5Wnx_EZb-45qL1LXGnsFrkLNShyUn3w-nE3Wof_8j6Pic33oDrxpiSnqhJa3Bki3XYXVOrnADFHJMxCjSC-sGKjJ25HL8MJ5W5MTrXmPY_EyufpXIKau76oAMEDPDUGOz2fOAyNKQ45B5RzdSBaQ3N4e-CTeD4-svw6jJ0RBpluVxZLNMCqFoyjOJPQ9rkVFgq8CjVPLcGMVTYT0Hy7uJc45xJ6TJDLc6sVRITrdguRyX9i0QIzjXEimIthhZlJQuj02ujc0VQ97COvBpZqLiPkhxFEF0OSl8rRVtrXVgZ2bBonHJqkAiKxiGm7jbgb32NjqTnyGRpcXK8s8gJcsyKjqwHSzffop2kZwlvhhJbb9HylBcnY9G7dm7p7y0CyuX_UExOr04ew8v_eWwCXIHlicPU_sB2dBEfawb_B_bygIX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+of+Porous+Graphene%3A+Synthesis%2C+Functionalization%2C+and+Electrochemical+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhang%2C+Yuanyuan&rft.au=Wan%2C+Qijin&rft.au=Yang%2C+Nianjun&rft.date=2019-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=48&rft_id=info:doi/10.1002%2Fsmll.201903780&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon