Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications
Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these is...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 48; pp. e1903780 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self‐assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined.
Synthesis of 2D and 3D porous graphene is reviewed together with their functionalization with hetero‐atoms and other functional materials. Electrochemical applications of these porous graphene are highlighted in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage and conversion. The future research directions and challenges on porous graphene are also discussed and outlined. |
---|---|
AbstractList | Abstract
Graphene is a 2D sheet of sp
2
bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self‐assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined. Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self‐assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined. Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self‐assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined. Synthesis of 2D and 3D porous graphene is reviewed together with their functionalization with hetero‐atoms and other functional materials. Electrochemical applications of these porous graphene are highlighted in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage and conversion. The future research directions and challenges on porous graphene are also discussed and outlined. Graphene is a 2D sheet of sp bonded carbon atoms and tends to aggregate together, due to the strong π-π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self-assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined. |
Author | Zhang, Yuanyuan Yang, Nianjun Wan, Qijin |
Author_xml | – sequence: 1 givenname: Yuanyuan surname: Zhang fullname: Zhang, Yuanyuan email: yyzhang@wit.edu.cn organization: Wuhan Institute of Technology – sequence: 2 givenname: Qijin surname: Wan fullname: Wan, Qijin organization: Wuhan Institute of Technology – sequence: 3 givenname: Nianjun orcidid: 0000-0002-5558-2314 surname: Yang fullname: Yang, Nianjun email: nianjun.yang@uni-siegen.de organization: University of Siegen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31663294$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLAzEUhYMovrcuJeDGha15zCNxV8RWoaL4WA9p5g4dySRjMqPUX29qtYIbV_csvvvBOXto0zoLCB1RMqSEsPPQGDNkhErCc0E20C7NKB9kgsnNdaZkB-2F8EIIpyzJt9EOp1nGmUx20ewBNNgOj8o3ZTUE7Cp877zrA5541c7BwgV-XNhuDqEOZ3jcW93VzipTf6hlOMPKlvjKgO6803Noaq0MHrWtiWEJhAO0VSkT4PD77qPn8dXT5fVgeje5uRxNBzrJJRlAnishZjxLc5WKFEAwAlrHlKlUluUszQRwyaSkrKqqJK2EKvMyBc2AC5XyfXS68rbevfYQuqKpgwZjlIXYp2CckijPuYjoyR_0xfU-lvqiRCIzTmikhitKexeCh6pofd0ovygoKZbrF8v1i_X68eH4W9vPGijX-M_cEZAr4L02sPhHVzzeTqe_8k-z05Os |
CitedBy_id | crossref_primary_10_1002_adma_202108750 crossref_primary_10_1088_1361_648X_ad39be crossref_primary_10_1002_adfm_202314282 crossref_primary_10_1016_j_isci_2023_106155 crossref_primary_10_3390_polym13142277 crossref_primary_10_1039_D3TC00963G crossref_primary_10_1002_smll_202202516 crossref_primary_10_3390_nano12010135 crossref_primary_10_1002_admt_202100207 crossref_primary_10_1016_j_cej_2021_134250 crossref_primary_10_1016_j_electacta_2022_140258 crossref_primary_10_1016_j_cclet_2020_07_025 crossref_primary_10_1016_j_jallcom_2023_168882 crossref_primary_10_1021_acs_chemmater_2c00467 crossref_primary_10_3389_fchem_2023_1308948 crossref_primary_10_3390_chemosensors9060146 crossref_primary_10_1016_j_physb_2023_415099 crossref_primary_10_1016_j_addr_2021_113970 crossref_primary_10_1016_j_colsurfa_2020_125587 crossref_primary_10_1002_adem_202300248 crossref_primary_10_1002_eem2_12611 crossref_primary_10_1016_j_ceramint_2024_04_418 crossref_primary_10_1142_S1793604723400040 crossref_primary_10_1016_j_ceramint_2021_07_186 crossref_primary_10_1021_acs_chemrev_3c00392 crossref_primary_10_1016_j_ultsonch_2022_106208 crossref_primary_10_1002_cnma_202200151 crossref_primary_10_1016_j_tifs_2022_08_011 crossref_primary_10_1039_D3CC01004J crossref_primary_10_1016_j_jelechem_2020_114169 crossref_primary_10_1016_j_cej_2023_142422 crossref_primary_10_1039_D1TA01267C crossref_primary_10_1002_mabi_202000432 crossref_primary_10_1088_1361_6528_aba658 crossref_primary_10_3390_pr11051451 crossref_primary_10_1016_j_bios_2020_112722 crossref_primary_10_3390_plants13010113 crossref_primary_10_1002_adfm_202007458 crossref_primary_10_1016_j_carbon_2022_11_009 crossref_primary_10_1021_acsaelm_0c00953 crossref_primary_10_1088_1361_6528_ac0190 crossref_primary_10_1016_j_jelechem_2023_117204 crossref_primary_10_1007_s00604_023_06041_1 crossref_primary_10_1016_j_cis_2021_102550 crossref_primary_10_2139_ssrn_4185378 crossref_primary_10_1016_j_materresbull_2021_111268 crossref_primary_10_1016_j_carbon_2022_01_013 crossref_primary_10_1039_D0CC03745A crossref_primary_10_1039_D0MH00815J crossref_primary_10_1016_j_est_2021_103380 crossref_primary_10_1002_smtd_202100621 crossref_primary_10_1021_acsami_1c10242 crossref_primary_10_3390_c9030065 crossref_primary_10_1016_j_microc_2022_108043 crossref_primary_10_1109_JSEN_2023_3236068 crossref_primary_10_1103_PhysRevB_102_174106 crossref_primary_10_12677_HJCET_2023_132013 crossref_primary_10_1016_j_microc_2023_108643 crossref_primary_10_1016_j_pmatsci_2024_101289 crossref_primary_10_1016_j_jhazmat_2023_131893 crossref_primary_10_1016_j_carbon_2023_02_064 crossref_primary_10_1016_j_flatc_2020_100196 crossref_primary_10_1016_j_teac_2021_e00120 crossref_primary_10_1016_j_cej_2021_131846 crossref_primary_10_1039_D0RA05553K crossref_primary_10_1016_j_cej_2021_131323 crossref_primary_10_1039_D2RA01829B crossref_primary_10_1002_smll_202400650 crossref_primary_10_1002_smtd_202400856 crossref_primary_10_1039_D1AN01978C crossref_primary_10_1002_mame_201900813 crossref_primary_10_1007_s12274_022_4244_3 crossref_primary_10_3390_ijms23094745 crossref_primary_10_1016_j_chempr_2020_08_002 crossref_primary_10_7717_peerj_cs_1885 crossref_primary_10_1016_j_ceramint_2021_05_048 crossref_primary_10_1021_acsomega_1c00432 crossref_primary_10_1016_j_ijhydene_2020_12_089 crossref_primary_10_1021_acs_jpcc_2c08699 crossref_primary_10_3390_molecules27248644 crossref_primary_10_1016_j_desal_2022_116144 crossref_primary_10_1016_j_jhazmat_2021_126441 crossref_primary_10_1016_j_electacta_2021_137800 crossref_primary_10_1088_1361_6528_ac9d42 crossref_primary_10_2139_ssrn_4053255 crossref_primary_10_1039_D2TA01442D crossref_primary_10_1021_jacs_2c06377 crossref_primary_10_1080_10408436_2023_2274900 crossref_primary_10_1016_j_jelechem_2021_115164 crossref_primary_10_1016_j_carbon_2022_04_003 crossref_primary_10_1016_j_matlet_2022_133308 crossref_primary_10_1016_j_matchemphys_2020_123666 crossref_primary_10_1016_j_bios_2021_113206 crossref_primary_10_1016_j_cej_2024_149261 crossref_primary_10_1038_s41598_023_35596_5 crossref_primary_10_3390_nano11010079 crossref_primary_10_1021_acs_nanolett_1c03765 crossref_primary_10_1002_smll_202005255 crossref_primary_10_1039_D3NR06413A crossref_primary_10_1039_D3RA04153K crossref_primary_10_1016_j_jallcom_2024_173480 crossref_primary_10_1016_j_molstruc_2023_137102 crossref_primary_10_1021_accountsmr_2c00186 crossref_primary_10_1021_acsami_2c12948 crossref_primary_10_1016_j_microc_2022_107957 crossref_primary_10_1016_j_apsadv_2022_100233 crossref_primary_10_1002_smll_202401767 crossref_primary_10_1016_j_jelechem_2021_115553 crossref_primary_10_1016_j_jcis_2020_03_124 crossref_primary_10_1002_admi_201902190 crossref_primary_10_1007_s12034_023_03078_z crossref_primary_10_3390_bios13090886 crossref_primary_10_1016_j_apsusc_2020_145720 crossref_primary_10_1016_j_molliq_2023_123662 crossref_primary_10_1016_j_matlet_2022_131765 crossref_primary_10_1039_D0NR04558F crossref_primary_10_1149_1945_7111_ac2023 crossref_primary_10_1016_j_apsusc_2021_150254 crossref_primary_10_1039_D1TA00765C crossref_primary_10_1039_D3EN00091E crossref_primary_10_1016_j_carbon_2020_12_027 crossref_primary_10_1016_j_carbon_2024_118897 crossref_primary_10_1016_j_apsusc_2022_154430 crossref_primary_10_1007_s42823_023_00609_w crossref_primary_10_1016_S1872_5805_24_60856_5 crossref_primary_10_1021_acsestwater_0c00236 crossref_primary_10_1002_asia_202000747 crossref_primary_10_1002_smll_201905367 crossref_primary_10_1016_j_arabjc_2021_103088 crossref_primary_10_1016_j_jechem_2020_08_035 crossref_primary_10_1002_admi_202100783 crossref_primary_10_1039_D1RA05157A crossref_primary_10_1016_j_ijhydene_2020_10_040 crossref_primary_10_1149_1945_7111_ac163b crossref_primary_10_14529_mmph220407 crossref_primary_10_1002_elan_202060355 crossref_primary_10_1016_j_jpowsour_2022_232613 crossref_primary_10_1016_j_carbon_2020_12_034 crossref_primary_10_1021_acsnano_2c00379 crossref_primary_10_3390_catal13050879 crossref_primary_10_1016_j_colsurfa_2023_132178 crossref_primary_10_3389_fbioe_2022_804201 crossref_primary_10_1007_s00604_022_05475_3 crossref_primary_10_1016_j_ijhydene_2022_09_036 crossref_primary_10_1002_adma_202210734 crossref_primary_10_1016_j_apsusc_2021_150553 crossref_primary_10_1039_D3TC04677J crossref_primary_10_3390_nano10061161 crossref_primary_10_1002_masy_202300099 crossref_primary_10_1016_j_mtbio_2022_100231 |
Cites_doi | 10.1016/j.carbon.2018.12.103 10.1016/j.jpowsour.2016.10.109 10.1039/c1cc11159k 10.1002/anie.201701826 10.1016/j.jelechem.2018.12.039 10.1016/j.matlet.2017.11.120 10.1007/s11581-016-1954-0 10.1002/adfm.201807485 10.1039/C8RA04048F 10.1002/admi.201701548 10.1039/C9NR05202J 10.1021/acsaem.8b02014 10.1016/j.electacta.2018.02.148 10.1016/j.jelechem.2018.01.011 10.1016/j.matchemphys.2017.11.054 10.1002/adma.201900843 10.1016/j.jcou.2019.02.001 10.1016/j.carbon.2018.09.013 10.1002/smll.201902881 10.1016/j.electacta.2017.12.071 10.1007/s00604-018-2846-y 10.1002/adfm.201503726 10.1016/j.carbon.2018.05.055 10.1021/acsami.8b22260 10.1016/j.electacta.2018.09.109 10.1038/s41467-019-09274-y 10.1016/j.snb.2018.10.104 10.1002/aenm.201802238 10.1016/j.colsurfa.2018.12.002 10.1021/acssuschemeng.8b04447 10.1039/C7NR07748C 10.1126/science.aam5852 10.1002/smll.201704227 10.1002/adfm.201805026 10.1007/s10853-018-03247-0 10.1016/j.electacta.2018.10.173 10.1016/j.jallcom.2019.01.052 10.1021/acscatal.7b04091 10.1038/nnano.2010.8 10.3390/s18051456 10.1016/j.apcatb.2018.10.046 10.1002/smll.201800582 10.1016/j.jpowsour.2018.09.050 10.1021/acsnano.7b06263 10.1016/j.carbon.2018.02.072 10.1039/C4NR00005F 10.1016/j.electacta.2019.06.098 10.1186/s11671-018-2602-6 10.1007/s41918-019-00033-7 10.1016/j.aca.2012.12.020 10.1016/j.bios.2015.06.042 10.1016/j.snb.2018.11.079 10.1021/acsami.9b08915 10.1016/j.bios.2019.01.069 10.1016/j.carbon.2018.03.048 10.1039/C8TA04561E 10.1021/acsami.8b22478 10.1007/s00604-017-2588-2 10.1007/s12274-016-1293-5 10.1016/j.nanoen.2018.01.006 10.1016/j.nanoen.2018.02.007 10.1002/smll.201803858 10.1016/j.snb.2019.05.065 10.1039/C6RA23971D 10.1016/j.electacta.2016.06.146 10.1016/S1872-5805(17)60136-7 10.1016/j.microc.2019.02.067 10.1016/j.chempr.2019.02.008 10.1021/acsnano.8b08822 10.1021/acsaem.7b00338 10.1002/smll.201803043 10.1016/j.bios.2017.07.007 10.1021/acs.analchem.8b03764 10.1016/j.jcis.2018.01.045 10.1039/C8CC07744D 10.1039/C8CS00658J 10.1002/adfm.201707013 10.1039/C6RA13651F 10.1016/j.snb.2015.06.035 10.1016/j.jelechem.2019.01.003 10.1016/j.snb.2019.126730 10.1016/j.carbon.2019.01.039 10.1039/C9TA01347D 10.1016/j.cej.2019.01.155 10.1016/j.jpowsour.2016.03.089 10.1039/C9NR02476J 10.1016/j.bios.2018.05.038 10.1126/science.aau5321 10.1039/C9TA00942F 10.1016/j.jelechem.2016.09.050 10.1002/chem.201705445 10.1039/C5RA06196B 10.1016/j.bios.2016.05.002 10.1016/j.cej.2017.10.005 10.1039/C7TA04807F 10.1002/aenm.201702947 10.1021/acs.jpcc.8b05984 10.1002/adfm.201606352 10.1039/c3ta00133d 10.1021/acssuschemeng.7b04884 10.1016/j.ceramint.2018.08.292 10.1021/acssuschemeng.7b01820 10.1016/j.bios.2018.05.003 10.1016/j.snb.2018.10.032 10.1039/C8RA08763F 10.1016/j.snb.2019.126683 10.1002/adfm.201800382 10.1039/C6TA09505D 10.1007/s00604-019-3248-5 10.1039/C3TA13105J 10.1021/es504421y 10.1016/j.ijhydene.2018.06.162 10.1016/j.jpowsour.2018.07.061 10.1021/acsaem.8b01011 10.1002/adma.201704449 10.1016/j.cej.2017.03.049 10.1016/j.talanta.2018.04.027 10.1021/acsami.7b03477 10.1016/j.snb.2019.04.072 10.1016/j.bios.2016.08.015 10.1039/C8EE03403F 10.1002/aenm.201803215 10.1016/j.msec.2019.04.072 10.1016/j.matlet.2018.01.058 10.1002/advs.201900119 10.3390/nano7020040 10.1021/acsami.8b19971 10.1016/j.electacta.2017.01.024 10.1016/j.msec.2018.04.015 10.1016/j.carbon.2016.01.073 10.1021/nl500397y 10.1002/celc.201701148 10.1016/j.jssc.2018.09.026 10.1039/C5NJ03390J 10.1016/j.carbon.2017.05.101 10.1016/j.jelechem.2017.12.046 10.1016/j.electacta.2017.10.137 10.1039/C6TA08427C 10.1016/j.jcis.2017.01.062 10.1016/j.cej.2018.05.139 10.1016/j.jpowsour.2017.10.087 10.1021/acssuschemeng.8b00586 10.1007/s10934-018-0653-9 10.1016/j.carbon.2018.11.053 10.1021/acssuschemeng.8b04467 10.1016/j.bios.2018.08.043 10.1039/C7CS00757D 10.1126/science.aar2009 10.1016/j.carbon.2018.06.035 10.1002/adma.201303115 10.1002/admi.201600137 10.1039/C5TA00158G 10.1002/adma.201501901 10.1002/admi.201701261 10.1016/j.cej.2017.09.088 10.1016/j.snb.2015.01.083 10.1002/adma.201704156 10.1039/C8RA08745H 10.1016/j.jcis.2017.10.022 10.1002/aenm.201901896 10.1021/acsami.7b13822 10.1021/acsami.9b04580 10.1016/j.carbon.2011.12.016 10.1021/nn404444r 10.1039/C8AN00888D 10.1016/j.nanoen.2016.09.040 10.1016/j.surfcoat.2018.12.103 10.1039/C8NR09914F 10.1016/j.carbon.2017.11.037 10.1016/j.ijhydene.2018.04.118 10.1002/adfm.201706961 10.1002/adma.201201680 10.1016/j.cej.2017.02.040 10.1016/j.jpowsour.2019.05.060 10.1016/j.elecom.2016.04.007 10.1016/j.jhazmat.2019.04.021 10.1016/j.jpowsour.2018.04.057 10.1039/C7TA04692H 10.1002/adfm.201804630 10.1016/j.carbon.2019.04.070 10.1016/j.apcatb.2019.04.096 10.1016/j.bios.2019.01.047 10.1016/j.jelechem.2015.09.043 10.1021/acs.analchem.7b01304 10.1021/acsami.8b17908 10.1016/j.inoche.2018.08.018 10.1021/acsami.8b07316 10.1021/acsami.8b19613 10.1039/C7RA10626B 10.1002/elan.201880101 10.1021/acs.analchem.9b00556 10.1039/C8TA07946C 10.1039/C7TA03264A 10.1039/C7CS00904F 10.1039/C8TA09722D 10.1016/j.matdes.2019.107689 10.1039/C5EE03580E 10.1039/C9NR02607J 10.1002/adma.201800696 10.1007/s10853-018-2501-3 10.1038/nmat3001 10.1016/j.aca.2017.03.013 10.1016/j.carbon.2017.11.092 10.1016/j.cej.2017.11.001 10.1016/j.electacta.2018.12.103 10.1002/admi.201601227 10.1016/j.apsusc.2018.12.152 10.1039/C7SE00433H 10.1016/j.jallcom.2018.10.259 10.1039/C7TA05979E 10.1021/acsami.8b19223 10.1016/j.cej.2018.10.223 10.1002/adma.201704609 10.1002/adma.201803588 10.1016/j.jpowsour.2019.03.122 10.1038/ncomms5554 10.1039/C8AN02230E 10.1016/j.carbon.2018.06.052 10.1016/j.cap.2017.11.018 10.1039/C9TA00792J 10.1016/j.jelechem.2018.11.016 10.1016/j.carbon.2017.11.095 10.1021/acsenergylett.7b00229 10.1038/nnano.2015.37 10.1021/ac503234e 10.1016/j.talanta.2017.06.061 10.1039/C7TA01957B 10.1016/j.snb.2016.11.122 10.1002/elan.201600783 10.1016/j.snb.2019.02.105 10.1016/j.electacta.2017.02.059 10.1016/j.cej.2018.11.171 10.1016/j.snb.2017.11.061 10.1039/C8TA05407J 10.1016/j.nanoen.2018.04.063 10.1016/j.jechem.2018.06.002 10.1002/adfm.201801746 10.1039/C7CS00871F 10.1021/acs.nanolett.5b01212 10.1016/j.jpowsour.2018.04.032 10.1021/acsami.6b08719 10.3390/nano8080606 10.1016/j.chempr.2017.01.010 10.1016/j.apsusc.2018.04.185 10.1016/j.bios.2018.03.060 10.1039/C5RA14857J 10.1039/C7QI00574A 10.1002/smll.201803500 10.1016/j.ijhydene.2018.02.039 10.1002/elan.201700057 10.1021/am504276g 10.1002/adfm.201601562 10.1016/j.jpowsour.2018.07.059 10.1039/C7NR05208A 10.1039/C8NJ00652K 10.1002/admi.201600532 10.1016/j.carbon.2018.05.061 10.1186/s40580-017-0123-0 10.1016/j.electacta.2018.09.180 10.1016/j.electacta.2017.11.086 10.1016/j.snb.2017.12.103 10.1016/j.cej.2016.11.130 10.1016/j.jcis.2016.11.008 10.1002/adma.201703185 10.1016/j.msec.2017.04.097 10.1039/C8NR01049H 10.1039/C8EE03014F 10.1016/j.snb.2018.01.215 10.1039/C8DT02324G 10.1002/elan.201800089 10.1149/2.0611810jes 10.1016/j.electacta.2018.10.177 10.1002/anie.201906079 10.3390/mi10020084 10.1016/j.jallcom.2019.04.021 10.1002/admi.201701212 10.1016/j.jelechem.2017.12.059 10.1016/j.electacta.2016.11.113 10.1021/acsami.9b00625 10.1002/aenm.201802869 10.1016/j.snb.2019.02.037 10.1016/j.apsusc.2017.02.074 10.1016/j.carbon.2018.09.079 10.1021/acsami.7b18610 10.1016/j.nanoen.2018.08.075 10.1016/j.carbon.2017.02.010 10.1002/ppsc.201700395 10.1016/j.jpowsour.2019.04.075 10.1016/j.electacta.2018.11.131 10.1016/j.cej.2017.11.020 10.1016/j.micromeso.2017.03.061 10.1021/acsami.7b13836 10.1039/C8NR06666C 10.1021/nn202710s 10.1039/C6RA16703A 10.1016/j.snb.2018.08.036 10.1002/aenm.201901872 10.1016/j.snb.2015.08.094 10.1016/j.apsusc.2018.09.233 10.1016/j.jallcom.2017.12.294 10.1016/j.jelechem.2016.05.036 10.1021/acscatal.7b01983 10.1016/j.electacta.2016.06.136 10.1016/j.electacta.2018.09.082 10.20964/2018.10.22 10.1039/C7CS00787F 10.1016/j.electacta.2016.03.102 10.1016/j.compositesb.2018.11.085 10.1016/j.jallcom.2019.01.157 10.1016/j.snb.2018.02.135 10.1039/C7TA08748A 10.3390/s19040905 10.1039/C8TA02580K 10.1016/j.jelechem.2018.06.043 10.1039/C9NR02780G 10.1016/j.bios.2015.12.029 10.1016/j.electacta.2019.02.051 10.1016/j.electacta.2019.04.132 10.1039/C8CY01328D 10.1088/1361-6528/aac02c 10.1016/j.apsusc.2018.04.163 10.1088/1361-6528/ab0092 10.1021/acsami.8b08489 10.1016/j.electacta.2018.09.092 10.1016/j.carbon.2018.11.032 10.1002/anie.201809315 10.1016/j.electacta.2019.03.049 10.1039/C7TA05237E 10.1016/j.jallcom.2018.11.305 10.1016/j.electacta.2018.09.107 10.1016/j.jallcom.2018.11.288 10.1039/C8TA09188A 10.1016/j.jpowsour.2017.03.030 10.1039/C7TA04384H 10.1016/j.electacta.2018.10.176 10.20964/2018.11.77 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 24P WIN NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201903780 |
DatabaseName | Open Access: Wiley-Blackwell Open Access Journals Wiley Online Library Open Access PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_201903780 31663294 SMLL201903780 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61701352 – fundername: National Natural Science Foundation of China grantid: 61701352 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 24P 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WIN WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AAYOK ACBWZ ASPBG AVWKF AZFZN BDRZF EJD FEDTE GODZA HVGLF NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4790-e77a88b3657a585ee820ecc85e6a59ddb568e3929912fff45f8ad7d5ec2e38a53 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Fri Aug 16 23:15:22 EDT 2024 Thu Oct 10 18:56:26 EDT 2024 Fri Aug 23 01:08:56 EDT 2024 Sat Sep 28 08:29:47 EDT 2024 Sat Aug 24 01:09:38 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Keywords | functionalization synthesis electrochemical applications porous graphene |
Language | English |
License | Attribution-NonCommercial 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4790-e77a88b3657a585ee820ecc85e6a59ddb568e3929912fff45f8ad7d5ec2e38a53 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-5558-2314 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201903780 |
PMID | 31663294 |
PQID | 2318496301 |
PQPubID | 1046358 |
PageCount | 37 |
ParticipantIDs | proquest_miscellaneous_2310657738 proquest_journals_2318496301 crossref_primary_10_1002_smll_201903780 pubmed_primary_31663294 wiley_primary_10_1002_smll_201903780_SMLL201903780 |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 170 2019; 291 2018; 205 2019; 11 2019; 10 2019; 13 2019; 12 2017; 87 2019; 15 2017; 89 2016; 782 2019; 19 2016; 30 2016; 781 2019; 283 2019; 281 2019; 287 2019; 288 2019; 165 2018; 450 2017; 968 2016; 317 2018; 217 2018; 332 2018; 335 2019; 26 2018; 214 2018; 334 2017; 78 2019; 29 2016; 40 2019; 835 2019; 832 2019; 833 2012; 24 2010; 5 2019; 31 2019; 30 2018; 349 2016; 201 2017; 372 2017; 494 2011; 5 2017; 258 2019; 186 2012; 50 2016; 6 2018; 110 2016; 3 2018; 116 2018; 113 2019; 48 2017; 56 2016; 212 2018; 96 2019; 295 2016; 26 2019; 298 2016; 8 2016; 9 2019; 296 2019; 297 2018; 403 2019; 55 2019; 54 2019; 58 2016; 101 2016; 222 2017; 231 2018; 89 2017; 356 2017; 116 2014; 5 2014; 2 2017; 32 2017; 121 2017; 242 2017; 488 2014; 6 2017; 247 2015; 5 2015; 3 2017; 27 2017; 22 2017; 23 2019; 302 2019; 784 2019; 427 2017; 29 2019; 425 2019; 305 2019; 780 2017; 337 2017; 10 2019; 775 2019; 779 2018; 53 2017; 349 2017; 228 2018; 57 2017; 317 2019; 91 2018; 165 2013; 1 2015; 74 2013; 764 2014; 26 2019; 327 2018; 45 2013; 7 2018; 44 2018; 290 2018; 43 2018; 42 2017; 312 2018; 49 2019; 563 2018; 47 2018; 46 2018; 6 2018; 8 2018; 292 2018; 2 2018; 5 2018; 1 2015; 87 2014; 14 2019; 311 2018; 30 2019; 318 2018; 739 2017; 320 2019; 431 2018; 35 2019; 792 2019; 7 2018; 185 2018; 29 2018; 28 2019; 9 2019; 6 2019; 5 2019; 2 2019; 102 2019; 465 2018; 24 2018; 18 2018; 512 2015; 757 2018; 516 2018; 12 2018; 10 2018; 14 2018; 13 2017; 5 2017; 7 2018; 122 2018; 121 2017; 2 2018; 360 2017; 4 2018; 127 2018; 129 2015; 220 2018; 809 2011; 10 2018; 808 2019; 360 2019; 364 2017; 9 2019; 243 2017; 405 2018; 133 2015; 49 2018; 810 2018; 139 2018; 259 2015; 211 2018; 134 2018; 137 2018; 257 2019; 359 2019; 475 2018; 263 2018; 262 2015; 15 2018; 143 2018; 140 2018; 261 2018; 260 2018; 823 2018; 269 2015; 10 2019; 269 2019; 149 2019; 147 2017; 174 2019; 144 2019; 145 2019; 142 2019; 143 2018; 275 2015; 27 2018; 390 2018; 399 2018; 398 2017; 98 2011; 47 2019; 130 2019; 254 2016; 68 2019; 131 2019; 374 e_1_2_8_241_1 e_1_2_8_287_1 e_1_2_8_264_1 e_1_2_8_309_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_249_1 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_290_1 e_1_2_8_324_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_301_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_230_1 e_1_2_8_276_1 e_1_2_8_253_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_291_1 e_1_2_8_238_1 e_1_2_8_215_1 e_1_2_8_299_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_313_1 e_1_2_8_30_1 e_1_2_8_336_1 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_25_1 e_1_2_8_280_1 e_1_2_8_48_1 e_1_2_8_227_1 e_1_2_8_288_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 Cui H. (e_1_2_8_263_1) 2018; 2 e_1_2_8_340_1 e_1_2_8_171_1 e_1_2_8_302_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_325_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_254_1 e_1_2_8_14_1 e_1_2_8_292_1 e_1_2_8_37_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_277_1 Yuan Y. (e_1_2_8_139_1) 2019; 11 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_314_1 e_1_2_8_167_1 e_1_2_8_337_1 e_1_2_8_28_1 e_1_2_8_243_1 e_1_2_8_220_1 e_1_2_8_281_1 e_1_2_8_228_1 e_1_2_8_266_1 e_1_2_8_205_1 e_1_2_8_289_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_341_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_303_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_326_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_293_1 e_1_2_8_270_1 e_1_2_8_217_1 e_1_2_8_255_1 e_1_2_8_278_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_330_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_315_1 e_1_2_8_338_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_282_1 e_1_2_8_27_1 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_267_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_342_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_304_1 e_1_2_8_327_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_271_1 e_1_2_8_294_1 e_1_2_8_16_1 e_1_2_8_233_1 e_1_2_8_256_1 e_1_2_8_279_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_331_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 Wu J. (e_1_2_8_218_1) 2016; 3 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_339_1 e_1_2_8_146_1 e_1_2_8_316_1 e_1_2_8_283_1 e_1_2_8_68_1 e_1_2_8_260_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_245_1 e_1_2_8_268_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_320_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_343_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_328_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_305_1 e_1_2_8_19_1 e_1_2_8_295_1 e_1_2_8_109_1 e_1_2_8_272_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_257_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_332_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_317_1 Zhang L. (e_1_2_8_94_1) 2019; 327 e_1_2_8_29_1 e_1_2_8_284_1 e_1_2_8_329_1 e_1_2_8_261_1 e_1_2_8_200_1 e_1_2_8_223_1 Chen X. (e_1_2_8_154_1) 2018; 1 e_1_2_8_246_1 e_1_2_8_269_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_321_1 e_1_2_8_44_1 e_1_2_8_344_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_306_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_318_1 e_1_2_8_273_1 e_1_2_8_296_1 e_1_2_8_250_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_235_1 e_1_2_8_258_1 e_1_2_8_163_1 Li R. (e_1_2_8_187_1) 2017; 5 e_1_2_8_140_1 Rethinasabapathy M. (e_1_2_8_40_1) 2017; 22 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_310_1 e_1_2_8_33_1 e_1_2_8_333_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_262_1 e_1_2_8_307_1 e_1_2_8_285_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_322_1 e_1_2_8_345_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_319_1 e_1_2_8_251_1 e_1_2_8_297_1 e_1_2_8_274_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_259_1 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_311_1 e_1_2_8_334_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_240_1 e_1_2_8_286_1 e_1_2_8_308_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_300_1 e_1_2_8_323_1 e_1_2_8_116_1 e_1_2_8_346_1 e_1_2_8_23_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_252_1 e_1_2_8_275_1 e_1_2_8_298_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_335_1 e_1_2_8_12_1 e_1_2_8_312_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 55 start-page: 1738 year: 2019 publication-title: Chem. Commun. – volume: 27 start-page: 4516 year: 2015 publication-title: Adv. Mater. – volume: 6 start-page: 5458 year: 2014 publication-title: Nanoscale – volume: 2 start-page: 280 year: 2018 publication-title: Sustainable Energy Fuels – volume: 30 start-page: 1472 year: 2018 publication-title: Electroanalysis – volume: 247 start-page: 116 year: 2017 publication-title: Microporous Mesoporous Mater. – volume: 137 start-page: 458 year: 2018 publication-title: Carbon – volume: 8 start-page: 606 year: 2018 publication-title: Nanomaterials – volume: 26 start-page: 5158 year: 2016 publication-title: Adv. Funct. Mater. – volume: 53 start-page: 415 year: 2018 publication-title: Nano Energy – volume: 147 start-page: 163 year: 2019 publication-title: Microchem. J. – volume: 14 start-page: 3145 year: 2014 publication-title: Nano Lett. – volume: 1 start-page: 9409 year: 2013 publication-title: J. Mater. Chem. A – volume: 287 start-page: 209 year: 2019 publication-title: Sens. Actuators, B – volume: 12 start-page: 289 year: 2018 publication-title: ACS Nano – volume: 7 start-page: 1451 year: 2019 publication-title: J. Mater. Chem. A – volume: 44 year: 2018 publication-title: Ceram. Int. – volume: 78 start-page: 210 year: 2017 publication-title: Mater. Sci. Eng., C – volume: 8 start-page: 3579 year: 2018 publication-title: ACS Catal. – volume: 290 start-page: 616 year: 2018 publication-title: Electrochim. Acta – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 32 start-page: 509 year: 2017 publication-title: New Carbon Mater. – volume: 4 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2019 publication-title: Nanotechnology – volume: 2 start-page: 10 year: 2018 publication-title: Small Methods – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 217 start-page: 104 year: 2018 publication-title: Mater. Lett. – volume: 1 start-page: 5024 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 327 start-page: 142 year: 2019 publication-title: Carbon – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 403 start-page: 66 year: 2018 publication-title: J. Power Sources – volume: 68 start-page: 10 year: 2016 publication-title: Electrochem. Commun. – volume: 228 start-page: 203 year: 2017 publication-title: Electrochim. Acta – volume: 364 start-page: 1057 year: 2019 publication-title: Science – volume: 297 year: 2019 publication-title: Sens. Actuators, B – volume: 13 start-page: 9618 year: 2018 publication-title: Int. J. Electrochem. Sci. – volume: 185 start-page: 316 year: 2018 publication-title: Microchim. Acta – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 317 start-page: 461 year: 2017 publication-title: Chem. Eng. J. – volume: 30 start-page: 1 year: 2018 publication-title: Electroanalysis – volume: 281 start-page: 245 year: 2019 publication-title: Sens. Actuators, B – volume: 320 start-page: 283 year: 2017 publication-title: Chem. Eng. J. – volume: 390 start-page: 215 year: 2018 publication-title: J. Power Sources – volume: 563 start-page: 112 year: 2019 publication-title: Colloids Surf. A – volume: 222 start-page: 567 year: 2016 publication-title: Sens. Actuators, B – volume: 49 start-page: 354 year: 2018 publication-title: Nano Energy – volume: 242 start-page: 728 year: 2017 publication-title: Sens. Actuators, B – volume: 405 start-page: 308 year: 2017 publication-title: Appl. Surf. Sci. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 337 start-page: 65 year: 2017 publication-title: J. Power Sources – volume: 10 start-page: 1474 year: 2019 publication-title: Nat. Commun. – volume: 335 start-page: 467 year: 2018 publication-title: Chem. Eng. J. – volume: 259 start-page: 540 year: 2018 publication-title: Sens. Actuators, B – volume: 335 start-page: 954 year: 2018 publication-title: Chem. Eng. J. – volume: 13 start-page: 5163 year: 2019 publication-title: ACS Nano – volume: 298 start-page: 321 year: 2019 publication-title: Electrochim. Acta – volume: 87 start-page: 1638 year: 2015 publication-title: Anal. Chem. – volume: 425 start-page: 1 year: 2019 publication-title: J. Power Sources – volume: 56 start-page: 6970 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 7852 year: 2019 publication-title: J. Mater. Chem. A – volume: 261 start-page: 35 year: 2018 publication-title: Electrochim. Acta – volume: 359 start-page: 801 year: 2019 publication-title: Chem. Eng. J. – volume: 832 start-page: 275 year: 2019 publication-title: J. Electroanal. Chem. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 702 year: 2018 publication-title: J. Mater. Chem. A – volume: 6 start-page: 6175 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 781 start-page: 204 year: 2016 publication-title: J. Electroanal. Chem. – volume: 332 start-page: 260 year: 2018 publication-title: Chem. Eng. J. – volume: 130 start-page: 276 year: 2019 publication-title: Biosens. Bioelectron. – volume: 810 start-page: 154 year: 2018 publication-title: J. Electroanal. Chem. – volume: 1 start-page: 891 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 101 start-page: 49 year: 2016 publication-title: Carbon – volume: 5 start-page: 7784 year: 2017 publication-title: J. Mater. Chem. A – volume: 149 start-page: 452 year: 2019 publication-title: Carbon – volume: 9 start-page: 1270 year: 2016 publication-title: Energy Environ. Sci. – volume: 47 start-page: 2165 year: 2018 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 2093 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 260 start-page: 944 year: 2018 publication-title: Electrochim. Acta – volume: 42 start-page: 5634 year: 2018 publication-title: New J. Chem. – volume: 257 start-page: 1009 year: 2018 publication-title: Sens. Actuators, B – volume: 98 start-page: 310 year: 2017 publication-title: Biosens. Bioelectron. – volume: 1 start-page: 5189 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 835 start-page: 1 year: 2019 publication-title: J. Electroanal. Chem. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 89 start-page: 7166 year: 2017 publication-title: Anal. Chem. – volume: 47 year: 2018 publication-title: Dalton Trans. – volume: 212 start-page: 147 year: 2016 publication-title: Electrochim. Acta – volume: 89 start-page: 85 year: 2017 publication-title: Biosens. Bioelectron. – volume: 2 start-page: 171 year: 2017 publication-title: Chem – volume: 262 start-page: 180 year: 2018 publication-title: Sens. Actuators, B – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 212 start-page: 171 year: 2016 publication-title: Electrochim. Acta – volume: 201 start-page: 117 year: 2016 publication-title: Electrochim. Acta – volume: 87 start-page: 101 year: 2017 publication-title: Biosens. Bioelectron. – volume: 258 start-page: 485 year: 2017 publication-title: Electrochim. Acta – volume: 9 year: 2017 publication-title: Nanoscale – volume: 205 start-page: 487 year: 2018 publication-title: Mater. Chem. Phys. – volume: 475 start-page: 285 year: 2019 publication-title: Appl. Surf. Sci. – volume: 7 start-page: 6700 year: 2017 publication-title: ACS Catal. – volume: 465 start-page: 625 year: 2019 publication-title: Appl. Surf. Sci. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 11 start-page: 9011 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 7 year: 2013 publication-title: ACS Nano – volume: 29 start-page: 1506 year: 2017 publication-title: Electroanalysis – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 292 start-page: 639 year: 2018 publication-title: Electrochim. Acta – volume: 31 start-page: 159 year: 2019 publication-title: J. Energy Chem. – volume: 18 start-page: S37 year: 2018 publication-title: Curr. Appl. Phys. – volume: 140 start-page: 314 year: 2018 publication-title: Carbon – volume: 349 start-page: 75 year: 2017 publication-title: J. Power Sources – volume: 121 start-page: 443 year: 2017 publication-title: Carbon – volume: 46 start-page: 266 year: 2018 publication-title: Nano Energy – volume: 2 start-page: 332 year: 2019 publication-title: Electrochem. Energy Rev. – volume: 15 year: 2019 publication-title: Small – volume: 45 start-page: 273 year: 2018 publication-title: Nano Energy – volume: 356 start-page: 599 year: 2017 publication-title: Science – volume: 116 start-page: 123 year: 2018 publication-title: Biosens. Bioelectron. – volume: 23 start-page: 1525 year: 2017 publication-title: Ionics – volume: 784 start-page: 869 year: 2019 publication-title: J. Alloys Compd. – volume: 7 start-page: 363 year: 2019 publication-title: J. Mater. Chem. A – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 2280 year: 2017 publication-title: J. Mater. Chem. A – volume: 24 start-page: 4419 year: 2012 publication-title: Adv. Mater. – volume: 5 start-page: 9848 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 4138 year: 2019 publication-title: Nanoscale – volume: 334 start-page: 1 year: 2018 publication-title: Chem. Eng. J. – volume: 220 start-page: 919 year: 2015 publication-title: Sens. Actuators, B – volume: 2 start-page: 1445 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 359 start-page: 1668 year: 2019 publication-title: Chem. Eng. J. – volume: 792 start-page: 50 year: 2019 publication-title: J. Alloys Compd. – volume: 292 start-page: 568 year: 2018 publication-title: Electrochim. Acta – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 4028 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 1371 year: 2019 publication-title: Chem – volume: 349 start-page: 782 year: 2018 publication-title: Chem. Eng. J. – volume: 174 start-page: 527 year: 2017 publication-title: Talanta – volume: 54 start-page: 5658 year: 2019 publication-title: J. Mater. Sci. – volume: 35 year: 2018 publication-title: Part. Part. Syst. Charact. – volume: 145 start-page: 311 year: 2019 publication-title: Carbon – volume: 231 start-page: 300 year: 2017 publication-title: Electrochim. Acta – volume: 291 start-page: 362 year: 2019 publication-title: Sens. Actuators, B – volume: 779 start-page: 202 year: 2019 publication-title: J. Alloys Compd. – volume: 144 start-page: 2186 year: 2019 publication-title: Analyst – volume: 399 start-page: 115 year: 2018 publication-title: J. Power Sources – volume: 281 start-page: 96 year: 2019 publication-title: Sens. Actuators, B – volume: 14 year: 2018 publication-title: Small – volume: 30 start-page: 168 year: 2019 publication-title: J. CO2 Util. – volume: 2 start-page: 1327 year: 2017 publication-title: ACS Energy Lett. – volume: 129 start-page: 301 year: 2018 publication-title: Carbon – volume: 13 start-page: 190 year: 2018 publication-title: Nanoscale Res. Lett. – volume: 780 start-page: 55 year: 2019 publication-title: J. Alloys Compd. – volume: 2 start-page: 451 year: 2014 publication-title: J. Mater. Chem. A – volume: 302 start-page: 216 year: 2019 publication-title: Electrochim. Acta – volume: 372 start-page: 286 year: 2017 publication-title: J. Power Sources – volume: 116 start-page: 223 year: 2017 publication-title: Carbon – volume: 317 start-page: 10 year: 2016 publication-title: J. Power Sources – volume: 170 year: 2019 publication-title: Mater. Des. – volume: 269 start-page: 151 year: 2019 publication-title: J. Solid State Chem. – volume: 364 start-page: 57 year: 2019 publication-title: Chem. Eng. J. – volume: 3 year: 2016 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 739 start-page: 290 year: 2018 publication-title: J. Alloys Compd. – volume: 3 start-page: 5402 year: 2015 publication-title: J. Mater. Chem. A – volume: 450 start-page: 372 year: 2018 publication-title: Appl. Surf. Sci. – volume: 764 start-page: 53 year: 2013 publication-title: Anal. Chim. Acta – volume: 263 start-page: 543 year: 2018 publication-title: Sens. Actuators, B – volume: 137 start-page: 467 year: 2018 publication-title: Carbon – volume: 43 year: 2018 publication-title: Int. J. Hydrogen Energy – volume: 808 start-page: 321 year: 2018 publication-title: J. Electroanal. Chem. – volume: 12 start-page: 747 year: 2019 publication-title: Energy Environ. Sci. – volume: 10 start-page: 305 year: 2017 publication-title: Nano Res. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 5 start-page: 4554 year: 2014 publication-title: Nat. Commun. – volume: 222 start-page: 1371 year: 2016 publication-title: Electrochim. Acta – volume: 275 start-page: 78 year: 2018 publication-title: Sens. Actuators, B – volume: 10 start-page: 84 year: 2019 publication-title: Micromachines – volume: 823 start-page: 437 year: 2018 publication-title: J. Electroanal. Chem. – volume: 143 start-page: 610 year: 2019 publication-title: Carbon – volume: 5 start-page: 619 year: 2017 publication-title: J. Mater. Chem. A – volume: 296 start-page: 165 year: 2019 publication-title: Electrochim. Acta – volume: 295 start-page: 514 year: 2019 publication-title: Electrochim. Acta – volume: 11 start-page: 9374 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 283 start-page: 130 year: 2019 publication-title: Sens. Actuators, B – volume: 19 start-page: 905 year: 2019 publication-title: Sensors – volume: 129 start-page: 95 year: 2018 publication-title: Carbon – volume: 121 start-page: 96 year: 2018 publication-title: Biosens. Bioelectron. – volume: 91 start-page: 6043 year: 2019 publication-title: Anal. Chem. – volume: 22 start-page: 1 year: 2017 publication-title: Carbon Lett. – volume: 211 start-page: 220 year: 2015 publication-title: Sens. Actuators, B – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 450 start-page: 348 year: 2018 publication-title: Appl. Surf. Sci. – volume: 74 start-page: 71 year: 2015 publication-title: Biosens. Bioelectron. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 254 start-page: 186 year: 2019 publication-title: Appl. Catal., B – volume: 5 start-page: 1811 year: 2018 publication-title: ChemElectroChem – volume: 144 start-page: 713 year: 2019 publication-title: Carbon – volume: 4 start-page: 2017 year: 2017 publication-title: Inorg. Chem. Front. – volume: 185 start-page: 51 year: 2018 publication-title: Microchim. Acta – volume: 7 start-page: 40 year: 2017 publication-title: Nanomaterials – volume: 13 year: 2018 publication-title: Int. J. Electrochem. Sci. – volume: 5 start-page: 1417 year: 2017 publication-title: Microchim. Acta – volume: 5 start-page: 8739 year: 2011 publication-title: ACS Nano – volume: 318 start-page: 460 year: 2019 publication-title: Electrochim. Acta – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 292 start-page: 20 year: 2018 publication-title: Electrochim. Acta – volume: 47 start-page: 5976 year: 2011 publication-title: Chem. Commun. – volume: 374 start-page: 195 year: 2019 publication-title: J. Hazard. Mater. – volume: 30 start-page: 93 year: 2016 publication-title: Nano Energy – volume: 12 start-page: 2030 year: 2019 publication-title: Energy Environ. Sci. – volume: 269 start-page: 544 year: 2018 publication-title: Electrochim. Acta – volume: 305 start-page: 175 year: 2019 publication-title: Electrochim. Acta – volume: 11 start-page: 5373 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 165 start-page: 10 year: 2019 publication-title: Composites, Part B – volume: 29 start-page: 1258 year: 2017 publication-title: Electroanalysis – volume: 26 start-page: 849 year: 2014 publication-title: Adv. Mater. – volume: 295 start-page: 490 year: 2019 publication-title: Electrochim. Acta – volume: 47 start-page: 8766 year: 2018 publication-title: Chem. Soc. Rev. – volume: 186 start-page: 171 year: 2019 publication-title: Microchim. Acta – volume: 8 year: 2018 publication-title: RSC Adv. – volume: 113 start-page: 142 year: 2018 publication-title: Biosens. Bioelectron. – volume: 40 start-page: 6022 year: 2016 publication-title: New J. Chem. – volume: 15 start-page: 4605 year: 2015 publication-title: Nano Lett. – volume: 110 start-page: 180 year: 2018 publication-title: Biosens. Bioelectron. – volume: 10 start-page: 7996 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 516 start-page: 1 year: 2018 publication-title: J. Colloid Interface Sci. – volume: 96 start-page: 159 year: 2018 publication-title: Inorg. Chem. Commun. – volume: 102 start-page: 708 year: 2019 publication-title: Mater. Sci. Eng., C – volume: 6 start-page: 8437 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 757 start-page: 235 year: 2015 publication-title: J. Electroanal. Chem. – volume: 9 start-page: 99 year: 2019 publication-title: RSC Adv. – volume: 312 start-page: 180 year: 2017 publication-title: Chem. Eng. J. – volume: 139 start-page: 1117 year: 2018 publication-title: Carbon – volume: 775 start-page: 1206 year: 2019 publication-title: J. Alloys Compd. – volume: 296 year: 2019 publication-title: Sens. Actuators, B – volume: 214 start-page: 209 year: 2018 publication-title: Mater. Lett. – volume: 127 start-page: 449 year: 2018 publication-title: Carbon – volume: 24 start-page: 3263 year: 2018 publication-title: Chem. ‐ Eur. J. – volume: 288 start-page: 88 year: 2019 publication-title: Sens. Actuators, B – volume: 7 start-page: 831 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 784 start-page: 697 year: 2019 publication-title: J. Alloys Compd. – volume: 10 start-page: 424 year: 2011 publication-title: Nat. Mater. – volume: 6 year: 2019 publication-title: RSC Adv. – volume: 8 start-page: 5325 year: 2018 publication-title: Catal. Sci. Technol. – volume: 26 start-page: 271 year: 2019 publication-title: J. Porous Mater. – volume: 512 start-page: 379 year: 2018 publication-title: J. Colloid Interface Sci. – volume: 5 start-page: 190 year: 2010 publication-title: Nat. Nanotechnol. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 431 start-page: 114 year: 2019 publication-title: J. Power Sources – volume: 360 start-page: 199 year: 2018 publication-title: Science – volume: 134 start-page: 540 year: 2018 publication-title: Carbon – volume: 143 start-page: 3327 year: 2018 publication-title: Analyst – volume: 165 start-page: H629 year: 2018 publication-title: J. Electrochem. Soc. – volume: 398 start-page: 167 year: 2018 publication-title: J. Power Sources – volume: 833 start-page: 543 year: 2019 publication-title: J. Electroanal. Chem. – volume: 89 start-page: 230 year: 2018 publication-title: Mater. Sci. Eng., C – volume: 488 start-page: 317 year: 2017 publication-title: J. Colloid Interface Sci. – volume: 91 start-page: 888 year: 2019 publication-title: Anal. Chem. – volume: 494 start-page: 355 year: 2017 publication-title: J. Colloid Interface Sci. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 143 start-page: 869 year: 2019 publication-title: Carbon – volume: 47 start-page: 3189 year: 2018 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 67 year: 2015 publication-title: Environ. Sci. Technol. – volume: 311 start-page: 114 year: 2019 publication-title: Electrochim. Acta – volume: 18 start-page: 1456 year: 2018 publication-title: Sensors – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 139 start-page: 137 year: 2018 publication-title: Carbon – volume: 390 start-page: 93 year: 2018 publication-title: J. Power Sources – volume: 185 start-page: 528 year: 2018 publication-title: Talanta – volume: 782 start-page: 76 year: 2016 publication-title: J. Electroanal. Chem. – volume: 243 start-page: 294 year: 2019 publication-title: Appl. Catal., B – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: 29 year: 2017 publication-title: Nano Convergence – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 50 start-page: 1699 year: 2012 publication-title: Carbon – volume: 7 start-page: 847 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 10 start-page: 459 year: 2015 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 4362 year: 2019 publication-title: Nanoscale – volume: 53 year: 2018 publication-title: J. Mater. Sci. – volume: 809 start-page: 117 year: 2018 publication-title: J. Electroanal. Chem. – volume: 296 start-page: 755 year: 2019 publication-title: Electrochim. Acta – volume: 968 start-page: 21 year: 2017 publication-title: Anal. Chim. Acta – volume: 48 start-page: 157 year: 2019 publication-title: Chem. Soc. Rev. – volume: 142 start-page: 1 year: 2019 publication-title: Carbon – volume: 427 start-page: 91 year: 2019 publication-title: J. Power Sources – volume: 360 start-page: 110 year: 2019 publication-title: Surf. Coat. Technol. – volume: 131 start-page: 200 year: 2019 publication-title: Biosens. Bioelectron. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 89 start-page: 167 year: 2017 publication-title: Biosens. Bioelectron. – volume: 26 start-page: 577 year: 2016 publication-title: Adv. Funct. Mater. – volume: 295 start-page: 615 year: 2019 publication-title: Electrochim. Acta – volume: 295 start-page: 86 year: 2019 publication-title: Sens. Actuators, B – volume: 47 start-page: 2680 year: 2018 publication-title: Chem. Soc. Rev. – volume: 133 start-page: 369 year: 2018 publication-title: Carbon – ident: e_1_2_8_74_1 doi: 10.1016/j.carbon.2018.12.103 – ident: e_1_2_8_111_1 doi: 10.1016/j.jpowsour.2016.10.109 – ident: e_1_2_8_60_1 doi: 10.1039/c1cc11159k – ident: e_1_2_8_116_1 doi: 10.1002/anie.201701826 – ident: e_1_2_8_170_1 doi: 10.1016/j.jelechem.2018.12.039 – ident: e_1_2_8_247_1 doi: 10.1016/j.matlet.2017.11.120 – ident: e_1_2_8_199_1 doi: 10.1007/s11581-016-1954-0 – ident: e_1_2_8_119_1 doi: 10.1002/adfm.201807485 – ident: e_1_2_8_148_1 doi: 10.1039/C8RA04048F – ident: e_1_2_8_145_1 doi: 10.1002/admi.201701548 – ident: e_1_2_8_260_1 doi: 10.1039/C9NR05202J – volume: 1 start-page: 5189 year: 2018 ident: e_1_2_8_154_1 publication-title: ACS Appl. Energy Mater. contributor: fullname: Chen X. – ident: e_1_2_8_338_1 doi: 10.1021/acsaem.8b02014 – ident: e_1_2_8_120_1 doi: 10.1016/j.electacta.2018.02.148 – ident: e_1_2_8_160_1 doi: 10.1016/j.jelechem.2018.01.011 – ident: e_1_2_8_95_1 doi: 10.1016/j.matchemphys.2017.11.054 – ident: e_1_2_8_121_1 doi: 10.1002/adma.201900843 – ident: e_1_2_8_289_1 doi: 10.1016/j.jcou.2019.02.001 – ident: e_1_2_8_61_1 doi: 10.1016/j.carbon.2018.09.013 – ident: e_1_2_8_336_1 doi: 10.1002/smll.201902881 – ident: e_1_2_8_131_1 doi: 10.1016/j.electacta.2017.12.071 – ident: e_1_2_8_69_1 doi: 10.1007/s00604-018-2846-y – ident: e_1_2_8_72_1 doi: 10.1002/adfm.201503726 – ident: e_1_2_8_222_1 doi: 10.1016/j.carbon.2018.05.055 – ident: e_1_2_8_284_1 doi: 10.1021/acsami.8b22260 – ident: e_1_2_8_136_1 doi: 10.1016/j.electacta.2018.09.109 – ident: e_1_2_8_308_1 doi: 10.1038/s41467-019-09274-y – volume: 2 start-page: 10 year: 2018 ident: e_1_2_8_263_1 publication-title: Small Methods contributor: fullname: Cui H. – ident: e_1_2_8_195_1 doi: 10.1016/j.snb.2018.10.104 – volume: 327 start-page: 142 year: 2019 ident: e_1_2_8_94_1 publication-title: Carbon contributor: fullname: Zhang L. – ident: e_1_2_8_294_1 doi: 10.1002/aenm.201802238 – ident: e_1_2_8_54_1 doi: 10.1016/j.colsurfa.2018.12.002 – ident: e_1_2_8_130_1 doi: 10.1021/acssuschemeng.8b04447 – ident: e_1_2_8_203_1 doi: 10.1039/C7NR07748C – ident: e_1_2_8_312_1 doi: 10.1126/science.aam5852 – ident: e_1_2_8_286_1 doi: 10.1002/smll.201704227 – ident: e_1_2_8_64_1 doi: 10.1002/adfm.201805026 – ident: e_1_2_8_92_1 doi: 10.1007/s10853-018-03247-0 – ident: e_1_2_8_277_1 doi: 10.1016/j.electacta.2018.10.173 – ident: e_1_2_8_314_1 doi: 10.1016/j.jallcom.2019.01.052 – ident: e_1_2_8_23_1 doi: 10.1021/acscatal.7b04091 – ident: e_1_2_8_11_1 doi: 10.1038/nnano.2010.8 – ident: e_1_2_8_211_1 doi: 10.3390/s18051456 – ident: e_1_2_8_291_1 doi: 10.1016/j.apcatb.2018.10.046 – ident: e_1_2_8_300_1 doi: 10.1002/smll.201800582 – ident: e_1_2_8_138_1 doi: 10.1016/j.jpowsour.2018.09.050 – ident: e_1_2_8_104_1 doi: 10.1021/acsnano.7b06263 – ident: e_1_2_8_161_1 doi: 10.1016/j.carbon.2018.02.072 – ident: e_1_2_8_174_1 doi: 10.1039/C4NR00005F – ident: e_1_2_8_223_1 doi: 10.1016/j.electacta.2019.06.098 – ident: e_1_2_8_59_1 doi: 10.1186/s11671-018-2602-6 – ident: e_1_2_8_44_1 doi: 10.1007/s41918-019-00033-7 – ident: e_1_2_8_229_1 doi: 10.1016/j.aca.2012.12.020 – ident: e_1_2_8_80_1 doi: 10.1016/j.bios.2015.06.042 – ident: e_1_2_8_83_1 doi: 10.1016/j.snb.2018.11.079 – ident: e_1_2_8_333_1 doi: 10.1021/acsami.9b08915 – ident: e_1_2_8_232_1 doi: 10.1016/j.bios.2019.01.069 – ident: e_1_2_8_22_1 doi: 10.1016/j.carbon.2018.03.048 – ident: e_1_2_8_191_1 doi: 10.1039/C8TA04561E – ident: e_1_2_8_235_1 doi: 10.1021/acsami.8b22478 – ident: e_1_2_8_209_1 doi: 10.1007/s00604-017-2588-2 – ident: e_1_2_8_244_1 doi: 10.1007/s12274-016-1293-5 – ident: e_1_2_8_134_1 doi: 10.1016/j.nanoen.2018.01.006 – ident: e_1_2_8_123_1 doi: 10.1016/j.nanoen.2018.02.007 – ident: e_1_2_8_35_1 doi: 10.1002/smll.201803858 – ident: e_1_2_8_239_1 doi: 10.1016/j.snb.2019.05.065 – ident: e_1_2_8_88_1 doi: 10.1039/C6RA23971D – ident: e_1_2_8_47_1 doi: 10.1016/j.electacta.2016.06.146 – ident: e_1_2_8_261_1 doi: 10.1016/S1872-5805(17)60136-7 – ident: e_1_2_8_75_1 doi: 10.1016/j.microc.2019.02.067 – ident: e_1_2_8_20_1 doi: 10.1016/j.chempr.2019.02.008 – ident: e_1_2_8_315_1 doi: 10.1021/acsnano.8b08822 – ident: e_1_2_8_295_1 doi: 10.1021/acsaem.7b00338 – ident: e_1_2_8_337_1 doi: 10.1002/smll.201803043 – ident: e_1_2_8_226_1 doi: 10.1016/j.bios.2017.07.007 – ident: e_1_2_8_146_1 doi: 10.1021/acs.analchem.8b03764 – ident: e_1_2_8_324_1 doi: 10.1016/j.jcis.2018.01.045 – ident: e_1_2_8_306_1 doi: 10.1039/C8CC07744D – ident: e_1_2_8_5_1 doi: 10.1039/C8CS00658J – ident: e_1_2_8_158_1 doi: 10.1002/adfm.201707013 – ident: e_1_2_8_248_1 doi: 10.1039/C6RA13651F – ident: e_1_2_8_173_1 doi: 10.1016/j.snb.2015.06.035 – ident: e_1_2_8_176_1 doi: 10.1016/j.jelechem.2019.01.003 – ident: e_1_2_8_241_1 doi: 10.1016/j.snb.2019.126730 – ident: e_1_2_8_252_1 doi: 10.1016/j.carbon.2019.01.039 – ident: e_1_2_8_283_1 doi: 10.1039/C9TA01347D – ident: e_1_2_8_326_1 doi: 10.1016/j.cej.2019.01.155 – ident: e_1_2_8_27_1 doi: 10.1016/j.jpowsour.2016.03.089 – ident: e_1_2_8_329_1 doi: 10.1039/C9NR02476J – ident: e_1_2_8_73_1 doi: 10.1016/j.bios.2018.05.038 – ident: e_1_2_8_12_1 doi: 10.1126/science.aau5321 – ident: e_1_2_8_81_1 doi: 10.1039/C9TA00942F – volume: 11 start-page: 4138 year: 2019 ident: e_1_2_8_139_1 publication-title: Nanoscale contributor: fullname: Yuan Y. – ident: e_1_2_8_188_1 doi: 10.1016/j.jelechem.2016.09.050 – ident: e_1_2_8_303_1 doi: 10.1002/chem.201705445 – ident: e_1_2_8_175_1 doi: 10.1039/C5RA06196B – ident: e_1_2_8_41_1 doi: 10.1016/j.bios.2016.05.002 – ident: e_1_2_8_82_1 doi: 10.1016/j.cej.2017.10.005 – ident: e_1_2_8_346_1 doi: 10.1039/C7TA04807F – ident: e_1_2_8_328_1 doi: 10.1002/aenm.201702947 – ident: e_1_2_8_107_1 doi: 10.1021/acs.jpcc.8b05984 – ident: e_1_2_8_280_1 doi: 10.1002/adfm.201606352 – ident: e_1_2_8_52_1 doi: 10.1039/c3ta00133d – ident: e_1_2_8_169_1 doi: 10.1021/acssuschemeng.7b04884 – ident: e_1_2_8_302_1 doi: 10.1016/j.ceramint.2018.08.292 – ident: e_1_2_8_270_1 doi: 10.1021/acssuschemeng.7b01820 – ident: e_1_2_8_236_1 doi: 10.1016/j.bios.2018.05.003 – ident: e_1_2_8_220_1 doi: 10.1016/j.snb.2018.10.032 – ident: e_1_2_8_132_1 doi: 10.1039/C8RA08763F – ident: e_1_2_8_234_1 doi: 10.1016/j.snb.2019.126683 – ident: e_1_2_8_50_1 doi: 10.1002/adfm.201800382 – ident: e_1_2_8_339_1 doi: 10.1039/C6TA09505D – ident: e_1_2_8_4_1 doi: 10.1007/s00604-019-3248-5 – ident: e_1_2_8_79_1 doi: 10.1039/C3TA13105J – ident: e_1_2_8_45_1 doi: 10.1021/es504421y – ident: e_1_2_8_105_1 doi: 10.1021/acssuschemeng.7b04884 – ident: e_1_2_8_243_1 doi: 10.1016/j.ijhydene.2018.06.162 – ident: e_1_2_8_14_1 doi: 10.1016/j.jpowsour.2018.07.061 – ident: e_1_2_8_97_1 doi: 10.1021/acsaem.8b01011 – ident: e_1_2_8_297_1 doi: 10.1002/adma.201704449 – ident: e_1_2_8_53_1 doi: 10.1016/j.cej.2017.03.049 – ident: e_1_2_8_90_1 doi: 10.1016/j.talanta.2018.04.027 – ident: e_1_2_8_159_1 doi: 10.1021/acsami.7b03477 – ident: e_1_2_8_163_1 doi: 10.1016/j.snb.2019.04.072 – ident: e_1_2_8_198_1 doi: 10.1016/j.bios.2016.08.015 – ident: e_1_2_8_290_1 doi: 10.1039/C8EE03403F – ident: e_1_2_8_322_1 doi: 10.1002/aenm.201803215 – ident: e_1_2_8_205_1 doi: 10.1016/j.msec.2019.04.072 – ident: e_1_2_8_157_1 doi: 10.1016/j.matlet.2018.01.058 – ident: e_1_2_8_108_1 doi: 10.1002/advs.201900119 – ident: e_1_2_8_165_1 doi: 10.3390/nano7020040 – ident: e_1_2_8_271_1 doi: 10.1021/acsami.8b19971 – ident: e_1_2_8_242_1 doi: 10.1016/j.electacta.2017.01.024 – ident: e_1_2_8_182_1 doi: 10.1016/j.msec.2018.04.015 – ident: e_1_2_8_115_1 doi: 10.1016/j.carbon.2016.01.073 – ident: e_1_2_8_76_1 doi: 10.1021/nl500397y – ident: e_1_2_8_267_1 doi: 10.1002/celc.201701148 – ident: e_1_2_8_87_1 doi: 10.1016/j.jssc.2018.09.026 – ident: e_1_2_8_122_1 doi: 10.1039/C5NJ03390J – ident: e_1_2_8_62_1 doi: 10.1016/j.carbon.2017.05.101 – ident: e_1_2_8_299_1 doi: 10.1016/j.jelechem.2017.12.046 – ident: e_1_2_8_141_1 doi: 10.1016/j.electacta.2017.10.137 – ident: e_1_2_8_127_1 doi: 10.1039/C6TA08427C – ident: e_1_2_8_26_1 doi: 10.1016/j.jcis.2017.01.062 – ident: e_1_2_8_341_1 doi: 10.1016/j.cej.2018.05.139 – ident: e_1_2_8_109_1 doi: 10.1016/j.jpowsour.2017.10.087 – ident: e_1_2_8_128_1 doi: 10.1021/acssuschemeng.8b00586 – ident: e_1_2_8_85_1 doi: 10.1007/s10934-018-0653-9 – ident: e_1_2_8_39_1 doi: 10.1016/j.carbon.2018.11.053 – ident: e_1_2_8_310_1 doi: 10.1021/acssuschemeng.8b04467 – ident: e_1_2_8_233_1 doi: 10.1016/j.bios.2018.08.043 – ident: e_1_2_8_6_1 doi: 10.1039/C7CS00757D – ident: e_1_2_8_65_1 doi: 10.1126/science.aar2009 – ident: e_1_2_8_325_1 doi: 10.1016/j.carbon.2018.06.035 – ident: e_1_2_8_29_1 doi: 10.1002/adma.201303115 – ident: e_1_2_8_24_1 doi: 10.1002/admi.201600137 – ident: e_1_2_8_273_1 doi: 10.1039/C5TA00158G – ident: e_1_2_8_71_1 doi: 10.1002/adma.201501901 – ident: e_1_2_8_309_1 doi: 10.1002/admi.201701261 – ident: e_1_2_8_323_1 doi: 10.1016/j.cej.2017.09.088 – ident: e_1_2_8_215_1 doi: 10.1016/j.snb.2015.01.083 – ident: e_1_2_8_282_1 doi: 10.1002/adma.201704156 – ident: e_1_2_8_77_1 doi: 10.1039/C8RA08745H – ident: e_1_2_8_185_1 doi: 10.1016/j.jcis.2017.10.022 – volume: 3 start-page: 1600319 year: 2016 ident: e_1_2_8_218_1 publication-title: Adv. Funct. Mater. contributor: fullname: Wu J. – ident: e_1_2_8_335_1 doi: 10.1002/aenm.201901896 – ident: e_1_2_8_287_1 doi: 10.1021/acsami.7b13822 – ident: e_1_2_8_293_1 doi: 10.1021/acsami.9b04580 – ident: e_1_2_8_51_1 doi: 10.1016/j.carbon.2011.12.016 – ident: e_1_2_8_275_1 doi: 10.1021/nn404444r – ident: e_1_2_8_190_1 doi: 10.1039/C8AN00888D – ident: e_1_2_8_272_1 doi: 10.1016/j.nanoen.2016.09.040 – ident: e_1_2_8_321_1 doi: 10.1016/j.surfcoat.2018.12.103 – ident: e_1_2_8_86_1 doi: 10.1039/C8NR09914F – ident: e_1_2_8_70_1 doi: 10.1016/j.carbon.2017.11.037 – ident: e_1_2_8_251_1 doi: 10.1016/j.ijhydene.2018.04.118 – ident: e_1_2_8_144_1 doi: 10.1002/adfm.201706961 – ident: e_1_2_8_18_1 doi: 10.1002/adma.201201680 – ident: e_1_2_8_150_1 doi: 10.1016/j.cej.2017.02.040 – ident: e_1_2_8_91_1 doi: 10.1016/j.jpowsour.2019.05.060 – ident: e_1_2_8_228_1 doi: 10.1016/j.elecom.2016.04.007 – ident: e_1_2_8_66_1 doi: 10.1016/j.jhazmat.2019.04.021 – ident: e_1_2_8_110_1 doi: 10.1016/j.jpowsour.2018.04.057 – ident: e_1_2_8_31_1 doi: 10.1039/C7TA04692H – ident: e_1_2_8_151_1 doi: 10.1002/adfm.201804630 – ident: e_1_2_8_68_1 doi: 10.1016/j.carbon.2019.04.070 – ident: e_1_2_8_288_1 doi: 10.1016/j.apcatb.2019.04.096 – ident: e_1_2_8_2_1 doi: 10.1016/j.bios.2019.01.047 – ident: e_1_2_8_225_1 doi: 10.1016/j.jelechem.2015.09.043 – ident: e_1_2_8_224_1 doi: 10.1021/acs.analchem.7b01304 – ident: e_1_2_8_298_1 doi: 10.1021/acsami.8b17908 – ident: e_1_2_8_117_1 doi: 10.1016/j.inoche.2018.08.018 – ident: e_1_2_8_319_1 doi: 10.1021/acsami.8b07316 – ident: e_1_2_8_313_1 doi: 10.1021/acsami.8b19613 – ident: e_1_2_8_101_1 doi: 10.1039/C7RA10626B – ident: e_1_2_8_178_1 doi: 10.1002/elan.201880101 – ident: e_1_2_8_237_1 doi: 10.1021/acs.analchem.9b00556 – ident: e_1_2_8_137_1 doi: 10.1039/C8TA07946C – ident: e_1_2_8_112_1 doi: 10.1039/C7TA03264A – ident: e_1_2_8_28_1 doi: 10.1039/C7CS00904F – ident: e_1_2_8_253_1 doi: 10.1039/C8TA09722D – ident: e_1_2_8_93_1 doi: 10.1016/j.matdes.2019.107689 – ident: e_1_2_8_8_1 doi: 10.1039/C5EE03580E – ident: e_1_2_8_330_1 doi: 10.1039/C9NR02607J – ident: e_1_2_8_3_1 doi: 10.1002/adma.201800696 – ident: e_1_2_8_56_1 doi: 10.1007/s10853-018-2501-3 – ident: e_1_2_8_84_1 doi: 10.1038/nmat3001 – ident: e_1_2_8_168_1 doi: 10.1016/j.aca.2017.03.013 – ident: e_1_2_8_162_1 doi: 10.1016/j.carbon.2017.11.092 – ident: e_1_2_8_301_1 doi: 10.1016/j.cej.2017.11.001 – ident: e_1_2_8_140_1 doi: 10.1016/j.electacta.2018.12.103 – ident: e_1_2_8_255_1 doi: 10.1002/admi.201601227 – ident: e_1_2_8_106_1 doi: 10.1016/j.apsusc.2018.12.152 – ident: e_1_2_8_89_1 doi: 10.1039/C7SE00433H – ident: e_1_2_8_48_1 doi: 10.1016/j.jallcom.2018.10.259 – ident: e_1_2_8_153_1 doi: 10.1039/C7TA05979E – ident: e_1_2_8_345_1 doi: 10.1021/acsami.8b19223 – ident: e_1_2_8_149_1 doi: 10.1016/j.cej.2018.10.223 – ident: e_1_2_8_15_1 doi: 10.1002/adma.201704609 – ident: e_1_2_8_245_1 doi: 10.1002/adma.201803588 – ident: e_1_2_8_331_1 doi: 10.1016/j.jpowsour.2019.03.122 – ident: e_1_2_8_19_1 doi: 10.1038/ncomms5554 – ident: e_1_2_8_207_1 doi: 10.1039/C8AN02230E – ident: e_1_2_8_246_1 doi: 10.1016/j.carbon.2018.06.052 – ident: e_1_2_8_304_1 doi: 10.1016/j.cap.2017.11.018 – ident: e_1_2_8_63_1 doi: 10.1039/C9TA00792J – ident: e_1_2_8_201_1 doi: 10.1016/j.jelechem.2018.11.016 – ident: e_1_2_8_13_1 doi: 10.1016/j.carbon.2017.11.095 – ident: e_1_2_8_276_1 doi: 10.1021/acsenergylett.7b00229 – ident: e_1_2_8_58_1 doi: 10.1038/nnano.2015.37 – ident: e_1_2_8_213_1 doi: 10.1021/ac503234e – ident: e_1_2_8_227_1 doi: 10.1016/j.talanta.2017.06.061 – ident: e_1_2_8_118_1 doi: 10.1039/C7TA01957B – ident: e_1_2_8_202_1 doi: 10.1016/j.snb.2016.11.122 – ident: e_1_2_8_210_1 doi: 10.1002/elan.201600783 – ident: e_1_2_8_231_1 doi: 10.1016/j.snb.2019.02.105 – ident: e_1_2_8_230_1 doi: 10.1016/j.electacta.2017.02.059 – ident: e_1_2_8_103_1 doi: 10.1016/j.cej.2018.11.171 – ident: e_1_2_8_183_1 doi: 10.1016/j.snb.2017.11.061 – ident: e_1_2_8_279_1 doi: 10.1039/C8TA05407J – ident: e_1_2_8_135_1 doi: 10.1016/j.nanoen.2018.04.063 – ident: e_1_2_8_320_1 doi: 10.1016/j.jechem.2018.06.002 – ident: e_1_2_8_332_1 doi: 10.1002/adfm.201801746 – ident: e_1_2_8_21_1 doi: 10.1039/C7CS00871F – ident: e_1_2_8_46_1 doi: 10.1021/acs.nanolett.5b01212 – ident: e_1_2_8_102_1 doi: 10.1016/j.jpowsour.2018.04.032 – ident: e_1_2_8_266_1 doi: 10.1021/acsami.6b08719 – ident: e_1_2_8_318_1 doi: 10.3390/nano8080606 – ident: e_1_2_8_30_1 doi: 10.1016/j.chempr.2017.01.010 – ident: e_1_2_8_217_1 doi: 10.1016/j.apsusc.2018.04.185 – ident: e_1_2_8_43_1 doi: 10.1016/j.bios.2018.03.060 – ident: e_1_2_8_214_1 doi: 10.1039/C5RA14857J – ident: e_1_2_8_99_1 doi: 10.1039/C7QI00574A – ident: e_1_2_8_285_1 doi: 10.1002/smll.201803500 – ident: e_1_2_8_281_1 doi: 10.1016/j.ijhydene.2018.02.039 – ident: e_1_2_8_164_1 doi: 10.1002/elan.201700057 – ident: e_1_2_8_181_1 doi: 10.1021/am504276g – ident: e_1_2_8_216_1 doi: 10.1002/adfm.201601562 – ident: e_1_2_8_152_1 doi: 10.1016/j.jpowsour.2018.07.059 – ident: e_1_2_8_259_1 doi: 10.1039/C7NR05208A – ident: e_1_2_8_34_1 doi: 10.1039/C8NJ00652K – ident: e_1_2_8_274_1 doi: 10.1002/admi.201600532 – ident: e_1_2_8_264_1 doi: 10.1016/j.carbon.2018.05.061 – ident: e_1_2_8_32_1 doi: 10.1186/s40580-017-0123-0 – ident: e_1_2_8_142_1 doi: 10.1016/j.electacta.2018.09.180 – ident: e_1_2_8_343_1 doi: 10.1016/j.electacta.2017.11.086 – ident: e_1_2_8_172_1 doi: 10.1016/j.snb.2017.12.103 – ident: e_1_2_8_114_1 doi: 10.1016/j.cej.2016.11.130 – ident: e_1_2_8_100_1 doi: 10.1016/j.jcis.2016.11.008 – ident: e_1_2_8_124_1 doi: 10.1002/adma.201703185 – ident: e_1_2_8_200_1 doi: 10.1016/j.msec.2017.04.097 – ident: e_1_2_8_268_1 doi: 10.1039/C8NR01049H – ident: e_1_2_8_36_1 doi: 10.1039/C8EE03014F – ident: e_1_2_8_208_1 doi: 10.1016/j.snb.2018.01.215 – ident: e_1_2_8_269_1 doi: 10.1039/C8DT02324G – ident: e_1_2_8_67_1 doi: 10.1002/elan.201800089 – ident: e_1_2_8_184_1 doi: 10.1149/2.0611810jes – ident: e_1_2_8_196_1 doi: 10.1016/j.electacta.2018.10.177 – ident: e_1_2_8_292_1 doi: 10.1002/anie.201906079 – ident: e_1_2_8_189_1 doi: 10.3390/mi10020084 – ident: e_1_2_8_204_1 doi: 10.1016/j.jallcom.2019.04.021 – ident: e_1_2_8_33_1 doi: 10.1002/admi.201701212 – ident: e_1_2_8_179_1 doi: 10.1016/j.jelechem.2017.12.059 – ident: e_1_2_8_167_1 doi: 10.1016/j.electacta.2016.11.113 – ident: e_1_2_8_240_1 doi: 10.1021/acsami.9b00625 – ident: e_1_2_8_9_1 doi: 10.1002/aenm.201802869 – ident: e_1_2_8_206_1 doi: 10.1016/j.snb.2019.02.037 – ident: e_1_2_8_340_1 doi: 10.1016/j.apsusc.2017.02.074 – ident: e_1_2_8_250_1 doi: 10.1016/j.carbon.2018.09.079 – ident: e_1_2_8_305_1 doi: 10.1021/acsami.7b18610 – ident: e_1_2_8_17_1 doi: 10.1016/j.nanoen.2018.08.075 – ident: e_1_2_8_25_1 doi: 10.1016/j.carbon.2017.02.010 – ident: e_1_2_8_96_1 doi: 10.1002/ppsc.201700395 – ident: e_1_2_8_258_1 doi: 10.1016/j.jpowsour.2019.04.075 – ident: e_1_2_8_16_1 doi: 10.1016/j.electacta.2018.11.131 – ident: e_1_2_8_37_1 doi: 10.1016/j.cej.2017.11.020 – ident: e_1_2_8_57_1 doi: 10.1016/j.micromeso.2017.03.061 – ident: e_1_2_8_262_1 doi: 10.1021/acsami.7b13836 – ident: e_1_2_8_316_1 doi: 10.1039/C8NR06666C – ident: e_1_2_8_143_1 doi: 10.1016/j.cap.2017.11.018 – ident: e_1_2_8_10_1 doi: 10.1021/nn202710s – ident: e_1_2_8_49_1 doi: 10.1039/C6RA16703A – ident: e_1_2_8_219_1 doi: 10.1016/j.snb.2018.08.036 – ident: e_1_2_8_334_1 doi: 10.1002/aenm.201901872 – ident: e_1_2_8_194_1 doi: 10.1016/j.snb.2015.08.094 – ident: e_1_2_8_221_1 doi: 10.1016/j.apsusc.2018.09.233 – ident: e_1_2_8_78_1 doi: 10.1016/j.jallcom.2017.12.294 – ident: e_1_2_8_193_1 doi: 10.1016/j.jelechem.2016.05.036 – ident: e_1_2_8_257_1 doi: 10.1021/acscatal.7b01983 – ident: e_1_2_8_166_1 doi: 10.1016/j.electacta.2016.06.136 – volume: 5 start-page: 1417 year: 2017 ident: e_1_2_8_187_1 publication-title: Microchim. Acta contributor: fullname: Li R. – ident: e_1_2_8_129_1 doi: 10.1016/j.electacta.2018.09.082 – ident: e_1_2_8_186_1 doi: 10.20964/2018.10.22 – ident: e_1_2_8_7_1 doi: 10.1039/C7CS00787F – ident: e_1_2_8_192_1 doi: 10.1016/j.electacta.2016.03.102 – ident: e_1_2_8_38_1 doi: 10.1016/j.compositesb.2018.11.085 – ident: e_1_2_8_311_1 doi: 10.1016/j.jallcom.2019.01.157 – ident: e_1_2_8_197_1 doi: 10.1016/j.snb.2018.02.135 – ident: e_1_2_8_1_1 doi: 10.1039/C7TA08748A – ident: e_1_2_8_212_1 doi: 10.3390/s19040905 – ident: e_1_2_8_296_1 doi: 10.1039/C8TA02580K – ident: e_1_2_8_180_1 doi: 10.1016/j.jelechem.2018.06.043 – ident: e_1_2_8_238_1 doi: 10.1039/C9NR02780G – volume: 22 start-page: 1 year: 2017 ident: e_1_2_8_40_1 publication-title: Carbon Lett. contributor: fullname: Rethinasabapathy M. – ident: e_1_2_8_42_1 doi: 10.1016/j.bios.2015.12.029 – ident: e_1_2_8_125_1 doi: 10.1016/j.electacta.2019.02.051 – ident: e_1_2_8_147_1 doi: 10.1016/j.electacta.2019.04.132 – ident: e_1_2_8_254_1 doi: 10.1039/C8CY01328D – ident: e_1_2_8_133_1 doi: 10.1088/1361-6528/aac02c – ident: e_1_2_8_256_1 doi: 10.1016/j.apsusc.2018.04.163 – ident: e_1_2_8_177_1 doi: 10.1088/1361-6528/ab0092 – ident: e_1_2_8_344_1 doi: 10.1021/acsami.8b08489 – ident: e_1_2_8_98_1 doi: 10.1016/j.electacta.2018.09.092 – ident: e_1_2_8_317_1 doi: 10.1016/j.carbon.2018.11.032 – ident: e_1_2_8_278_1 doi: 10.1002/anie.201809315 – ident: e_1_2_8_156_1 doi: 10.1016/j.electacta.2019.03.049 – ident: e_1_2_8_113_1 doi: 10.1039/C7TA05237E – ident: e_1_2_8_265_1 doi: 10.1039/C7TA01957B – ident: e_1_2_8_55_1 doi: 10.1016/j.jallcom.2018.11.305 – ident: e_1_2_8_342_1 doi: 10.1016/j.electacta.2018.09.107 – ident: e_1_2_8_307_1 doi: 10.1016/j.jallcom.2018.11.288 – ident: e_1_2_8_327_1 doi: 10.1039/C8TA09188A – ident: e_1_2_8_126_1 doi: 10.1016/j.jpowsour.2017.03.030 – ident: e_1_2_8_155_1 doi: 10.1039/C7TA04384H – ident: e_1_2_8_171_1 doi: 10.1016/j.electacta.2018.10.176 – ident: e_1_2_8_249_1 doi: 10.20964/2018.11.77 |
SSID | ssj0031247 |
Score | 2.6661494 |
SecondaryResourceType | review_article |
Snippet | Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction between... Graphene is a 2D sheet of sp bonded carbon atoms and tends to aggregate together, due to the strong π-π stacking and van der Waals attraction between different... Abstract Graphene is a 2D sheet of sp 2 bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e1903780 |
SubjectTerms | Bonding strength Chemical bonds Composite materials electrochemical applications Energy storage functionalization Graphene Mass transfer Nanotechnology porous graphene Synthesis |
Title | Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201903780 https://www.ncbi.nlm.nih.gov/pubmed/31663294 https://www.proquest.com/docview/2318496301 https://search.proquest.com/docview/2310657738 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RnuBQoC00EKKtVIlLnTreXXvNLUJNoyqpKtpIuVn7lCqog-rkQH99Z72Om8ABCU5ey155vLMz8-3rG4ATJR11aawjaoSLmMxVJGTqolwwrVPqhKmzN0yv0vGMXc75fOMUf-CHaCfcvGXU_tobuFTV2TNpaHX_wy8dYECjmfCD9gFePSr61vJHUQxedXYVjFmRJ95aszbGydl29e2o9AfU3EaudegZvQa5FjrsOPneXy1VXz_-xuf4P3_1BvYaXEqGoSO9hRe23IdXG2yFB6AQYmKIIsOwbaAiC0euFw-LVUUuPO01es0v5OZXiZCyuqtOyQhDZphpbM56nhJZGnIeEu_ohqmADDeW0A9hNjq__TqOmhQNkWZZHkc2y6QQiqY8kzjwsBYBBXYKLKWS58YongrrIVg-SJxzjDshTWa41YmlQnL6DnbLRWmPgBjBuZaIQLRFx6KkdHlscm1srhjCFtaBz2sVFT8DE0cROJeTwrda0bZaB7prDRaNRVYF4ljB0NvEgw4ct4_RlvwCiSwtNpZ_BxFZllHRgfdB8-2n6ACxWeLFSGr9_UWG4mY6mbR3H_6l0kd46cvh4GMXdpcPK_sJEdBS9WAnYde9uq8_AfeIACU |
link.rule.ids | 315,783,787,1378,11576,27938,27939,46066,46308,46490,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4heqA90EJ5hFcXCakXDI7Xa697iyghpUlUFZC4WfuUqrYOwskBfj2zXttN2gMSvfkpr3d25vv29Q3AkRSW2iRUAdXcBrHIZMBFYoOMx0ol1HJdZW8YjZPBTXx5y5rVhG4vjNeHaAfcnGdU8do5uBuQPv2jGlr-_uXmDhDRaMqx1_4KfZ66JAafv7cKUhThq8qvgqgVOOmtRrcxjE4X31_EpX_I5iJ3rcCn_xZkU2y_5uTnyWwqT9TjX4qO__Vf72C1pqak59vSGiyZYh3ezAkWvgeJLBNRivT8yoGSTCz5NrmfzEpy4ZSvMXB-IlcPBbLK8kd5TPqImn6wsd7ueUxEocm5z72jarEC0pubRd-Am_759dkgqLM0BCpOszAwaSo4lzRhqcC-hzHIKbBd4FEiWKa1ZAk3joVl3chaGzPLhU41MyoylAtGN2G5mBRmG4jmjCmBJEQZjC1SCJuFOlPaZDJG5hJ34GNjo_zOi3HkXnY5yl2t5W2tdWCvMWFeO2WZI5XlMQacsNuBw_Y2upObIxGFwcpyzyApS1PKO7DlTd9-inaRnkWuGFFlwGfKkF-NhsP2bOclL32AlcH1aJgPv4y_7sJrd93vg9yD5en9zOwjIZrKg6rJPwHojANo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4hKqFyaMuzaWlZJKReMDjeXXvdW9QQQgkIFZC4WfuUUFsH4eTQ_vrOeh03aQ9IcPNTXu_szPft6xuAfSUddWmsI2qEi5jMVSRk6qJcMK1T6oSpszecX6TDG_b1lt_O7eIP-hDtgJv3jDpeewe_N-7or2ho9fOHnzpAQKOZwE77C5bS2C_q6n9rBaQooledXgVBK_LKWzPZxjg5Wnx_EZb-45qL1LXGnsFrkLNShyUn3w-nE3Wof_8j6Pic33oDrxpiSnqhJa3Bki3XYXVOrnADFHJMxCjSC-sGKjJ25HL8MJ5W5MTrXmPY_EyufpXIKau76oAMEDPDUGOz2fOAyNKQ45B5RzdSBaQ3N4e-CTeD4-svw6jJ0RBpluVxZLNMCqFoyjOJPQ9rkVFgq8CjVPLcGMVTYT0Hy7uJc45xJ6TJDLc6sVRITrdguRyX9i0QIzjXEimIthhZlJQuj02ujc0VQ97COvBpZqLiPkhxFEF0OSl8rRVtrXVgZ2bBonHJqkAiKxiGm7jbgb32NjqTnyGRpcXK8s8gJcsyKjqwHSzffop2kZwlvhhJbb9HylBcnY9G7dm7p7y0CyuX_UExOr04ew8v_eWwCXIHlicPU_sB2dBEfawb_B_bygIX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+of+Porous+Graphene%3A+Synthesis%2C+Functionalization%2C+and+Electrochemical+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhang%2C+Yuanyuan&rft.au=Wan%2C+Qijin&rft.au=Yang%2C+Nianjun&rft.date=2019-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=48&rft_id=info:doi/10.1002%2Fsmll.201903780&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |