The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function

We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 deg super( 2), as quantified by their redshift-space correlation function. In order to facilitate these measurement...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 464; no. 1; p. 1168
Main Authors Ross, Ashley J, Beutler, Florian, Chuang, Chia-Hsun, Pellejero-Ibanez, Marcos, Seo, Hee-Jong, Vargas-Magana, Mariana, Cuesta, Antonio J, Percival, Will J, Burden, Angela, Sanchez, Ariel G, Grieb, Jan Niklas, Reid, Beth, Brownstein, Joel R, Dawson, Kyle S, Eisenstein, Daniel J, Ho, Shirley, Kitaura, Francisco-Shu, Nichol, Robert C, Olmstead, Matthew D, Prada, Francisco, Rodriguez-Torres, Sergio A, Saito, Shun, Salazar-Albornoz, Salvador, Schneider, Donald P, Thomas, Daniel, Tinker, Jeremy, Tojeiro, Rita, Wang, Yuting, White, Martin, Zhao, Gong-bo
Format Journal Article
LanguageEnglish
Published London Oxford University Press 01.01.2017
Royal Astronomical Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 deg super( 2), as quantified by their redshift-space correlation function. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational footprint, masks for image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on BAO scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overlapping) 0.4 < z < 0.6 redshift bins. In each redshift bin, we obtain a precision that is 2.7 per cent or better on the radial distance and 1.6 per cent or better on the transverse distance. The combination of the redshift bins represents 1.8 per cent precision on the radial distance and 1.1 per cent precision on the transverse distance. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stw2372