Biodegradable 3D Printed Scaffolds of Modified Poly (Trimethylene Carbonate) Composite Materials with Poly (L-Lactic Acid) and Hydroxyapatite for Bone Regeneration

Biodegradable scaffolds based on biomedical polymeric materials have attracted wide interest in bone transplantation for clinical treatment for bone defects without a second operation. The composite materials of poly(trimethylene carbonate), poly(L-lactic acid), and hydroxyapatite (PTMC/PLA/HA and P...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 11; no. 12; p. 3215
Main Authors Kang, Honglei, Jiang, Xudong, Liu, Zhiwei, Liu, Fan, Yan, Guoping, Li, Feng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.11.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Biodegradable scaffolds based on biomedical polymeric materials have attracted wide interest in bone transplantation for clinical treatment for bone defects without a second operation. The composite materials of poly(trimethylene carbonate), poly(L-lactic acid), and hydroxyapatite (PTMC/PLA/HA and PTMC/HA) were prepared by the modification and blending of PTMC with PLA and HA, respectively. The PTMC/PLA/HA and PTMC/HA scaffolds were further prepared by additive manufacturing using the biological 3D printing method using the PTMC/PLA/HA and PTMC/HA composite materials, respectively. These scaffolds were also characterized by Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), automatic contact-angle, scanning electronic micrographs (SEM), diffraction of X-rays (XRD), differential scanning calorimetry (DSC), and thermogravimetry (TG). Subsequently, their properties, such as mechanical, biodegradation, cell cytotoxicity, cell compatibility in vitro, and proliferation/differentiation assay in vivo, were also investigated. Experiment results indicated that PTMC/PLA/HA and PTMC/HA scaffolds possessed low toxicity, good biodegradability, and good biocompatibility and then enhanced the cell multiplication ability of osteoblast cells (MC3T3-E1). Moreover, PTMC/PLA/HA and PTMC/HA scaffolds enhanced the adhesion and proliferation of MC3T3-E1 cells and enabled the bone cell proliferation and induction of bone tissue formation. Therefore, these composite materials can be used as potential biomaterials for bone repatriation and tissue engineering.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11123215