RPA resolves conflicting activities of accessory proteins during reconstitution of Dmc1-mediated meiotic recombination

Abstract Dmc1 catalyzes homology search and strand exchange during meiotic recombination in budding yeast and many other organisms including humans. Here we reconstitute Dmc1 recombination in vitro using six purified proteins from budding yeast including Dmc1 and its accessory proteins RPA, Rad51, R...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 47; no. 2; pp. 747 - 761
Main Authors Chan, Yuen-Ling, Zhang, Annie, Weissman, Benjamin P, Bishop, Douglas K
Format Journal Article
LanguageEnglish
Published England Oxford University Press 25.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Dmc1 catalyzes homology search and strand exchange during meiotic recombination in budding yeast and many other organisms including humans. Here we reconstitute Dmc1 recombination in vitro using six purified proteins from budding yeast including Dmc1 and its accessory proteins RPA, Rad51, Rdh54/Tid1, Mei5-Sae3 and Hop2-Mnd1 to promote D-loop formation between ssDNA and dsDNA substrates. Each accessory protein contributed to Dmc1's activity, with the combination of all six proteins yielding optimal activity. The ssDNA binding protein RPA plays multiple roles in stimulating Dmc1's activity including by overcoming inhibitory effects of ssDNA secondary structure on D-loop reactions, and by elongating D-loops. In addition, we demonstrate that RPA limits inhibitory interactions of Hop2-Mnd1 and Rdh54/Tid1 that otherwise occur during assembly of Dmc1-ssDNA nucleoprotein filaments. Finally, we report interactions between the proteins employed in the biochemical reconstitution including a direct interaction between Rad51 and Dmc1 that is enhanced by Mei5-Sae3.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gky1160