Identification and Characterization of circRNAs Responsive to Methyl Jasmonate in Arabidopsis thaliana

Circular RNAs (circRNAs) are endogenous noncoding RNAs with covalently closed continuous loop structures that are formed by 3'-5' ligation during splicing. These molecules are involved in diverse physiological and developmental processes in eukaryotic cells. Jasmonic acid (JA) is a critica...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 21; no. 3; p. 792
Main Authors Zhang, Jingjing, Liu, Ruiqi, Zhu, Yanfeng, Gong, Jiaxin, Yin, Shuwei, Sun, Peisen, Feng, Hao, Wang, Qi, Zhao, Shuaijing, Wang, Zhongyuan, Li, Guanglin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.01.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Circular RNAs (circRNAs) are endogenous noncoding RNAs with covalently closed continuous loop structures that are formed by 3'-5' ligation during splicing. These molecules are involved in diverse physiological and developmental processes in eukaryotic cells. Jasmonic acid (JA) is a critical hormonal regulator of plant growth and defense. However, the roles of circRNAs in the JA regulatory network are unclear. In this study, we performed high-throughput sequencing of at 24 h, 48 h, and 96 h after methyl JA (MeJA) treatment. A total of 8588 circRNAs, which were distributed on almost all chromosomes, were identified, and the majority of circRNAs had lengths between 200 and 800 bp. We identified 385 differentially expressed circRNAs (DEcircRNAs) by comparing data between MeJA-treated and untreated samples. Gene Ontology (GO) enrichment analysis of the host genes that produced the DEcircRNAs showed that the DEcircRNAs are mainly involved in response to stimulation and metabolism. Additionally, some DEcircRNAs were predicted to act as miRNA decoys. Eight DEcircRNAs were validated by qRT-PCR with divergent primers, and the junction sites of five DEcircRNAs were validated by PCR analysis and Sanger sequencing. Our results provide insight into the potential roles of circRNAs in the MeJA regulation network.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms21030792