Molecular Dynamics Simulation as a Tool to Identify Mutual Synergistic Folding Proteins

Mutual synergistic folding (MSF) proteins belong to a recently emerged subclass of disordered proteins, which are disordered in their monomeric forms but become ordered in their oligomeric forms. They can be identified by experimental methods following their unfolding, which happens in a single-step...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 24; no. 2; p. 1790
Main Authors Magyar, Csaba, Németh, Bálint Zoltán, Cserző, Miklós, Simon, István
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.01.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mutual synergistic folding (MSF) proteins belong to a recently emerged subclass of disordered proteins, which are disordered in their monomeric forms but become ordered in their oligomeric forms. They can be identified by experimental methods following their unfolding, which happens in a single-step cooperative process, without the presence of stable monomeric intermediates. Only a limited number of experimentally validated MSF proteins are accessible. The amino acid composition of MSF proteins shows high similarity to globular ordered proteins, rather than to disordered ones. However, they have some special structural features, which makes it possible to distinguish them from globular proteins. Even in the possession of their oligomeric three-dimensional structure, classification can only be performed based on unfolding experiments, which are frequently absent. In this work, we demonstrate a simple protocol using molecular dynamics simulations, which is able to indicate that a protein structure belongs to the MSF subclass. The presumption of the known atomic resolution quaternary structure is an obvious limitation of the method, and because of its high computational time requirements, it is not suitable for screening large databases; still, it is a valuable in silico tool for identification of MSF proteins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms24021790