The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Ameliorates Endothelial Inflammation and Microvascular Thrombosis in a Sepsis Mouse Model

The pathophysiology of sepsis involves inflammation and hypercoagulability, which lead to microvascular thrombosis and compromised organ perfusion. Dipeptidyl peptidase (DPP)-4 inhibitors, e.g., linagliptin, are commonly used anti-diabetic drugs known to exert anti-inflammatory effects. However, whe...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 23; no. 6; p. 3065
Main Authors Wang, Shen-Chih, Wang, Xiang-Yu, Liu, Chung-Te, Chou, Ruey-Hsing, Chen, Zhen Bouman, Huang, Po-Hsun, Lin, Shing-Jong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 12.03.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The pathophysiology of sepsis involves inflammation and hypercoagulability, which lead to microvascular thrombosis and compromised organ perfusion. Dipeptidyl peptidase (DPP)-4 inhibitors, e.g., linagliptin, are commonly used anti-diabetic drugs known to exert anti-inflammatory effects. However, whether these drugs confer an anti-thrombotic effect that preserves organ perfusion in sepsis remains to be investigated. In the present study, human umbilical vein endothelial cells (HUVECs) were treated with linagliptin to examine its anti-inflammatory and anti-thrombotic effects under tumor necrosis factor (TNF)-α treatment. To validate findings from in vitro experiments and provide in vivo evidence for the identified mechanism, a mouse model of lipopolysaccharide (LPS)-induced systemic inflammatory response syndrome was used, and pulmonary microcirculatory thrombosis was measured. In TNF-α-treated HUVECs and LPS-injected mice, linagliptin suppressed expressions of interleukin-1β (IL-1β) and intercellular adhesion molecule 1 (ICAM-1) via a nuclear factor-κB (NF-κB)-dependent pathway. Linagliptin attenuated tissue factor expression via the Akt/endothelial nitric oxide synthase pathway. In LPS-injected mice, linagliptin pretreatment significantly reduced thrombosis in the pulmonary microcirculation. These anti-inflammatory and anti-thrombotic effects were independent of blood glucose level. Together the present results suggest that linagliptin exerts protective effects against endothelial inflammation and microvascular thrombosis in a mouse model of sepsis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms23063065