The genetics of mental retardation

Genetic abnormalities frequently give rise to a mental retardation phenotype. Recent advances in resolution of comparative genomic hybridization and genomic sequence annotation has identified new syndromes at chromosome 3q29 and 9q34. The finding of a significant number of copy number polymorphisms...

Full description

Saved in:
Bibliographic Details
Published inHuman molecular genetics Vol. 15; no. suppl-2; pp. R110 - R116
Main Authors Raymond, F. Lucy, Tarpey, Patrick
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 15.10.2006
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Genetic abnormalities frequently give rise to a mental retardation phenotype. Recent advances in resolution of comparative genomic hybridization and genomic sequence annotation has identified new syndromes at chromosome 3q29 and 9q34. The finding of a significant number of copy number polymorphisms in the genome in the normal population, means that assigning pathogenicity to deletions and duplications in patients with mental retardation can be difficult but has been identified for duplications of MECP2 and L1CAM. Novel autosomal genes that cause mental retardation have been identified recently including CC2D1A identified by homozygosity mapping. Several new genes and pathways have been identified in the field of X-linked mental retardation but many more still await identification. Analysis of families where only a single male is affected reveals that the chance of this being due to a single X-linked gene abnormality is significantly less than would be expected if the excess of males in the population is entirely due to X-linked disease. Recent identification of novel X-linked mental retardation genes has identified components of the post-synaptic density and multiple zinc finger transcription factors as disease causing suggesting new mechanisms of disease causation. The first therapeutic treatments of animal models of mental retardation have been reported, a Drosophila model of Fragile X syndrome has been treated with lithium or metabotropic glutamate receptor (mGluR) antagonists and a mouse model of NF1 has been treated with the HMG-CoA reductase inhibitor lavastatin, which improves the learning and memory skills in these models.
Bibliography:ark:/67375/HXZ-TJ15JT2B-4
istex:3729B8A2ED356C1CD35A2E3E524E28B2B37A5CF4
ArticleID:ddl189
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-3
ObjectType-Review-1
ISSN:0964-6906
1460-2083
DOI:10.1093/hmg/ddl189