The Strategy of the Brain to Maintain the Force Production in Painful Contractions-A Motor Units Pool Reorganization
A common symptom in neuromuscular diseases is pain, which changes human movement in many ways. Using the decomposed electromyographic signal, we investigate the strategy of the brain in recruiting different pools of motor units (MUs) to produce torque during induced muscle pain in terms of firing ra...
Saved in:
Published in | Cells (Basel, Switzerland) Vol. 11; no. 20; p. 3299 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.10.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A common symptom in neuromuscular diseases is pain, which changes human movement in many ways. Using the decomposed electromyographic signal, we investigate the strategy of the brain in recruiting different pools of motor units (MUs) to produce torque during induced muscle pain in terms of firing rate (FR), recruitment threshold (RT) and action potential amplitude (MUAP
). These properties were used to define two groups (G1/G2) based on a K-means clusterization method. A 2.0 mL intramuscular hypertonic (6%) or isotonic (0.9%) saline solution was injected to induce pain or act as a placebo during isometric and isokinetic knee extension contractions. While isometric torque decreases after pain induction with hypertonic solution, this does not occur in isokinetic torque. This occurs because the MUs re-organized after the injection of both solutions. This is supported by an increase in RT, in both G1 and G2 MUs. However, when inducing pain with the hypertonic solution, RT increase is exacerbated. In this condition, FR also decreases, while MUAP
increases only for G1 MUs. Therefore, this study proposes that the strategy for maintaining force production during pain is to recruit MUs with higher RT and MUAP
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2073-4409 2073-4409 |
DOI: | 10.3390/cells11203299 |