A Review of Hologram Storage and Self-Written Waveguides Formation in Photopolymer Media
Photopolymer materials have received a great deal of attention because they are inexpensive, self-processing materials that are extremely versatile, offering many advantages over more traditional materials. To achieve their full potential, there is significant value in understanding the photophysica...
Saved in:
Published in | Polymers Vol. 9; no. 8; p. 337 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
03.08.2017
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Photopolymer materials have received a great deal of attention because they are inexpensive, self-processing materials that are extremely versatile, offering many advantages over more traditional materials. To achieve their full potential, there is significant value in understanding the photophysical and photochemical processes taking place within such materials. This paper includes a brief review of recent attempts to more fully understand what is needed to optimize the performance of photopolymer materials for Holographic Data Storage (HDS) and Self-Written Waveguides (SWWs) applications. Specifically, we aim to discuss the evolution of our understanding of what takes place inside these materials and what happens during photopolymerization process, with the objective of further improving the performance of such materials. Starting with a review of the photosensitizer absorptivity, a dye model combining the associated electromagnetics and photochemical kinetics is presented. Thereafter, the optimization of photopolymer materials for HDS and SWWs applications is reviewed. It is clear that many promising materials are being developed for the next generation optical applications media. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym9080337 |