Radar-based Hail-producing Storm Detection Using Positive Unlabeled Classification
Machine learning methods have been widely used in many fields of weather forecasting. However, some severe weather, such as hailstorm, is difficult to be completely and accurately recorded. These inaccurate data sets will affect the performance of machine-learning-based forecasting models. In this p...
Saved in:
Published in | Tehnički vjesnik Vol. 27; no. 2; pp. 941 - 950 |
---|---|
Main Authors | , , , |
Format | Journal Article Paper |
Language | English |
Published |
Slavonski Baod
University of Osijek
01.06.2020
Josipa Jurja Strossmayer University of Osijek Strojarski fakultet u Slavonskom Brodu; Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek; Građevinski i arhitektonski fakultet Osijek Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Machine learning methods have been widely used in many fields of weather forecasting. However, some severe weather, such as hailstorm, is difficult to be completely and accurately recorded. These inaccurate data sets will affect the performance of machine-learning-based forecasting models. In this paper, a weather-radar-based hail-producing storm detection method is proposed. This method utilizes the bagging class-weighted support vector machine to learn from partly labeled hail case data and the other unlabeled data, with features extracted from radar and sounding data. The real case data from three radars of North China are used for evaluation. Results suggest that the proposed method could improve both the forecast accuracy and the forecast lead time comparing with the commonly used radar parameter methods. Besides, the proposed method works better than the method with the supervised learning model in any situation, especially when the number of positive samples contaminated in the unlabeled set is large. |
---|---|
Bibliography: | 239105 |
ISSN: | 1330-3651 1848-6339 |
DOI: | 10.17559/TV-20190903094335 |