Dynamic response of a nonlinear parametrically excited system subject to harmonic base excitation

A Nonlinear Parametrically Excited (NPE) system subjected to a harmonic base excitation is presented. Parametric amplification, which is the process of amplifying the system's response with a parametric excitation, has been observed in mechanical and electrical systems. This paper includes an i...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 744; no. 1; pp. 12125 - 12134
Main Authors Zaghari, Bahareh, Rustighi, Emiliano, Tehrani, Maryam Ghandchi
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A Nonlinear Parametrically Excited (NPE) system subjected to a harmonic base excitation is presented. Parametric amplification, which is the process of amplifying the system's response with a parametric excitation, has been observed in mechanical and electrical systems. This paper includes an introduction to the equation of motion of interest, a brief analysis of the equations nonlinear response, and numerical results. The present work describes the effect of cubic stiffness nonlinearity, cubic parametric nonlinearity, and the relative phase between the base excitation and parametric excitation under parametric amplification. The nonlinearities investigated in this paper are generated by an electromagnetic system. These nonlinearities were found both experimentally and analytically in previous work [1]; however, their effect on a base excited NPE is demonstrated in the scope of this paper. This work has application in parametric amplification for systems, which are affected by strong stiffness nonlinearities and excited by harmonic motion. A careful selection of system parameters, such as relative phase and cubic parametric nonlinearity can result in significant parametric amplification, and prevent the jump from upper stable solutions to the lower stable solutions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/744/1/012125