An Exosomal Urinary miRNA Signature for Early Diagnosis of Renal Fibrosis in Lupus Nephritis

For lupus nephritis (LN) management, it is very important to detect fibrosis at an early stage. Urinary exosomal miRNAs profiling can be used as a potential multi-marker phenotyping tool to identify early fibrosis. We isolated and characterised urinary exosomes and cellular pellets from patients wit...

Full description

Saved in:
Bibliographic Details
Published inCells (Basel, Switzerland) Vol. 8; no. 8; p. 773
Main Authors Solé, Cristina, Moliné, Teresa, Vidal, Marta, Ordi-Ros, Josep, Cortés-Hernández, Josefina
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.07.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For lupus nephritis (LN) management, it is very important to detect fibrosis at an early stage. Urinary exosomal miRNAs profiling can be used as a potential multi-marker phenotyping tool to identify early fibrosis. We isolated and characterised urinary exosomes and cellular pellets from patients with biopsy-proven LN ( = 45) and healthy controls ( = 20). LN chronicity index (CI) correlated with urinary exosomal miR-21, miR-150, and miR-29c (r = 0.565, 0.840, -0.559, respectively). This miRNA profile distinguished low CI from moderate-high CI in LN patients with a high sensitivity and specificity (94.4% and 99.8%). Furthermore, this multimarker panel predicted an increased risk of progression to end-stage renal disease (ESRD). Pathway analysis identified and as common target genes for the three miRNAs. Immunohistochemistry in LN renal biopsies revealed a significant increase of COL1A1 and COL4A1 correlated with renal chronicity. SP1 decreased significantly in the high-CI group ( = 0.002). VEGFA levels showed no differences. In vitro experiments suggest that these miRNA combinations promote renal fibrosis by increasing profibrotic molecules through SP1 and Smad3/TGFβ pathways. In conclusion, a urinary exosomal multimarker panel composed of miR-21, miR-150, and miR-29c provides a non-invasive method to detect early renal fibrosis and predict disease progression in LN.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4409
2073-4409
DOI:10.3390/cells8080773