Isolation, Identification, and Bioinformatic Analysis of Antibacterial Proteins and Peptides from Immunized Hemolymph of Red Palm Weevil Rhynchophorus ferrugineus

Red palm weevil ( Olivier, 1791, Coleoptera: Curculionidae) is a destructive pest of palms, rapidly extending its native geographical range and causing large economic losses worldwide. The present work describes isolation, identification, and bioinformatic analysis of antibacterial proteins and pept...

Full description

Saved in:
Bibliographic Details
Published inBiomolecules (Basel, Switzerland) Vol. 11; no. 1; p. 83
Main Authors Knutelski, Stanisław, Awad, Mona, Łukasz, Natalia, Bukowski, Michał, Śmiałek, Justyna, Suder, Piotr, Dubin, Grzegorz, Mak, Paweł
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.01.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Red palm weevil ( Olivier, 1791, Coleoptera: Curculionidae) is a destructive pest of palms, rapidly extending its native geographical range and causing large economic losses worldwide. The present work describes isolation, identification, and bioinformatic analysis of antibacterial proteins and peptides from the immunized hemolymph of this beetle. In total, 17 different bactericidal or bacteriostatic compounds were isolated via a series of high-pressure liquid chromatography steps, and their partial amino acid sequences were determined by N-terminal sequencing or by mass spectrometry. The bioinformatic analysis of the results facilitated identification and description of corresponding nucleotide coding sequences for each peptide and protein, based on the recently published transcriptome database. The identified compounds are represented by several well-known bactericidal factors: two peptides similar to defensins, one cecropin-A1-like peptide, and one attacin-B-like protein. Interestingly, we have also identified some unexpected compounds comprising five isoforms of pheromone-binding proteins as well as seven isoforms of odorant-binding proteins. The particular role of these factors in insect response to bacterial infection needs further investigation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2218-273X
2218-273X
DOI:10.3390/biom11010083