CircRNA Expression Pattern and ceRNA and miRNA-mRNA Networks Involved in Anther Development in the CMS Line of Brassica campestris

Male-sterile plants provide an important breeding tool for the heterosis of hybrid crops, such as Brassicaceae. In the last decade, circular RNAs (circRNAs), as a novel class of covalently closed and single-stranded endogenous non-coding RNAs (ncRNAs), have received much attention because of their f...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 20; no. 19; p. 4808
Main Authors Liang, Yuwei, Zhang, Yuzhi, Xu, Liai, Zhou, Dong, Jin, Zongmin, Zhou, Huiyan, Lin, Sue, Cao, Jiashu, Huang, Li
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 27.09.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Male-sterile plants provide an important breeding tool for the heterosis of hybrid crops, such as Brassicaceae. In the last decade, circular RNAs (circRNAs), as a novel class of covalently closed and single-stranded endogenous non-coding RNAs (ncRNAs), have received much attention because of their functions as "microRNA (miRNA) sponges" and "competing endogenous RNAs" (ceRNAs). However, the information about circRNAs in the regulation of male-sterility and anther development is limited. In this study, we established the Polima cytoplasm male sterility (CMS) line "Bcpol97-05A", and the fertile line, "Bcajh97-01B", in L. ssp. Makino, syn. ssp. , and performed RNA expression profiling comparisons between the flower buds of the sterile line and fertile line by whole-transcriptome sequencing. A total of 31 differentially expressed (DE) circRNAs, 47 DE miRNAs, and 4779 DE mRNAs were identified. By using Cytoscape, the miRNA-mediated regulatory network and ceRNA network were constructed, and the circRNA A02:23507399|23531438 was hypothesized to be an important circRNA regulating anther development at the post-transcriptional level. The gene ontology (GO) analysis demonstrated that miRNAs and circRNAs could regulate the orderly secretion and deposition of cellulose, sporopollenin, pectin, and tryphine; the timely degradation of lipids; and the programmed cell death (PCD) of tapetum cells, which play key roles in anther development. Our study revealed a new circRNA-miRNA-mRNA network, which is involved in the anther development of which enriched the understanding of CMS in flowering plants, and laid a foundation for further study on the functions of circRNAs and miRNAs during anther development.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms20194808