Trend Analysis of a Database of Intravenous Pharmacokinetic Parameters in Humans for 1352 Drug Compounds

We report a trend analysis of human intravenous pharmacokinetic data on a data set of 1352 drugs. The aim in building this data set and its detailed analysis was to provide, as in the previous case published in 2008, an extended, robust, and accurate resource that could be applied by drug metabolism...

Full description

Saved in:
Bibliographic Details
Published inDrug metabolism and disposition Vol. 46; no. 11; pp. 1466 - 1477
Main Authors Lombardo, Franco, Berellini, Giuliano, Obach, R. Scott
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2018
American Society for Pharmacology and Experimental Therapeutics, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report a trend analysis of human intravenous pharmacokinetic data on a data set of 1352 drugs. The aim in building this data set and its detailed analysis was to provide, as in the previous case published in 2008, an extended, robust, and accurate resource that could be applied by drug metabolism, clinical pharmacology, and medicinal chemistry scientists to a variety of scaling approaches. All in vivo data were obtained or derived from original references, either through the literature or regulatory agency reports, exclusively from studies utilizing intravenous administration. Plasma protein binding data were collected from other available sources to supplement these pharmacokinetic data. These parameters were analyzed concurrently with a range of physicochemical properties, and resultant trends and patterns within the data are presented. In addition, the date of first disclosure of each molecule was reported and the potential “temporal” impact on data trends was analyzed. The findings reported here are consistent with earlier described trends between pharmacokinetic behavior and physicochemical properties. Furthermore, the availability of a large data set of pharmacokinetic data in humans will be important to further pursue analyses of physicochemical properties, trends, and modeling efforts and should propel our deeper understanding (especially in terms of clearance) of the absorption, distribution, metabolism, and excretion behavior of drug compounds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0090-9556
1521-009X
1521-009X
DOI:10.1124/dmd.118.082966