Synthesis and in vitro evaluation of electrodeposited barium titanate coating on Ti6Al4V

Osseointegration has been the concern of implantology for many years. Researchers have used various ceramic coatings for this purpose; however, piezoelectric ceramics (e.g., barium titanate [BTO]) are a novel field of interest. In this regard, BTO (BaTiO 3 ) coating was fabricated by electrophoretic...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical signals and sensors Vol. 6; no. 2; pp. 106 - 111
Main Authors Rahmati, Shahram, Basiriani, Mohammad, Rafienia, Mohammad, Yaghini, Jaber, Raeisi, Keyvan
Format Journal Article
LanguageEnglish
Published India Wolters Kluwer - Medknow Publications 01.04.2016
Medknow Publications and Media Pvt. Ltd
Medknow Publications & Media Pvt Ltd
Wolters Kluwer Medknow Publications
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Osseointegration has been the concern of implantology for many years. Researchers have used various ceramic coatings for this purpose; however, piezoelectric ceramics (e.g., barium titanate [BTO]) are a novel field of interest. In this regard, BTO (BaTiO 3 ) coating was fabricated by electrophoretic deposition on Ti6Al4V medical alloy, using sol-gel-synthesized nanometer BTO powder. Structure and morphologies were studied using X-ray diffraction and scanning electron microscopy (SEM), respectively. Bioactivity response of coated samples was evaluated by SEM and inductively coupled plasma (ICP) analysis after immersion in simulated body fluid (SBF). Cell compatibility was also studied via MTT assay and SEM imaging. Results showed homogenous coating with cubic structure and crystallite size of about 41 nm. SEM images indicated apatite formation on the coating after 7 days of SBF immersion, and ICP analysis approved ions concentration decrement in SBF. Cells showed flattened morphology in intimate contact with coating after 7 days of culture. Altogether, coated samples demonstrated appropriate bioactivity and biocompatibility.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2228-7477
2228-7477
DOI:10.4103/2228-7477.181034