Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga
Chlorarachniophytes are amoeboid algae with unusual chloroplasts. Instead of the usual two membranes that surround the chloroplasts of plants, green algae, and red algae, the chloroplasts of chlorarachniophytes have four bounding membranes. The extra membranes may reflect an unusual origin of chlora...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 91; no. 9; pp. 3690 - 3694 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
National Academy of Sciences of the United States of America
26.04.1994
National Acad Sciences National Academy of Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Chlorarachniophytes are amoeboid algae with unusual chloroplasts. Instead of the usual two membranes that surround the chloroplasts of plants, green algae, and red algae, the chloroplasts of chlorarachniophytes have four bounding membranes. The extra membranes may reflect an unusual origin of chlorarachniophyte chloroplasts. Rather than inheriting the organelle directly from their ancestors, chlorarachniophytes may have adopted the chloroplast of an algal cell ingested as prey. Parts of the algal cell are postulated to remain within the amoeba as a reduced eukaryotic endosymbiont [Hibberd, D. J. and Norris, R. E. (1984) J. Phycol. 20, 310-330]. A small nudeus-like structure, proposed to be a vestige of the endosymbiont's nucleus, is located in a space between the second and third chloroplast membranes. We cloned and sequenced nuclear-type rRNA genes from chlorarachniophytes and found two highly divergent genes. In situ hybridization shows that one gene is expressed by the amoebal (host) nucleus and the other is expressed by the putative endosymbiont nucleus, suggesting that the latter is indeed a foreign genome. Transcripts from the endosymbiont gene accumulate in the small cytoplasmic compartment between the second and third chloroplast membranes, which we believe to be the remnant cytoplasm of the endosymbiont. Using the endosymbiont gene as a probe, we identified three small chromosomes belonging to the endosymbiont nucleus. This knowledge should allow a detailed molecular analysis of the role of the endosymbiont's genome and cytoplasm in the partnership |
---|---|
Bibliography: | 9452418 F30 M01 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.91.9.3690 |