Unsupervised Brain Computer Interface Based on Intersubject Information and Online Adaptation
Conventional brain computer interfaces rely on a guided calibration procedure to address the problem of considerable variations in electroencephalography (EEG) across human subjects. This calibration, however, implies inconvenience to the end users. In this paper, we propose an online-adaptive-learn...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 17; no. 2; pp. 135 - 145 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Conventional brain computer interfaces rely on a guided calibration procedure to address the problem of considerable variations in electroencephalography (EEG) across human subjects. This calibration, however, implies inconvenience to the end users. In this paper, we propose an online-adaptive-learning method to address this problem for P300-based brain computer interfaces. By automatically capturing subject-specific EEG characteristics during online operation, this method allows a new user to start operating a P300-based brain-computer interface without guided (supervised) calibration. The basic principle is to first learn a generic model termed subject-independent model offline from EEG of a pool of subjects to capture common P300 characteristics. For a new user, a new model termed subject-specific model is then adapted online based on EEG recorded from the new subject and the corresponding labels predicted by either the subject-independent model or the adapted subject-specific model, depending on a confidence score. To verify the proposed method, a study involving 10 healthy subjects is carried out and positive results are obtained. For instance, after 2-4 min online adaptation (spelling of 10-20 characters), the accuracy of the adapted model converges to that of a fully trained supervised subject-specific model. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1534-4320 1558-0210 1558-0210 |
DOI: | 10.1109/TNSRE.2009.2015197 |