The Rapid Non-Destructive Differentiation of Different Varieties of Rice by Fluorescence Hyperspectral Technology Combined with Machine Learning

A rice classification method for the fast and non-destructive differentiation of different varieties is significant in research at present. In this study, fluorescence hyperspectral technology combined with machine learning techniques was used to distinguish five rice varieties by analyzing the fluo...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 29; no. 3; p. 682
Main Authors Kang, Zhiliang, Fan, Rongsheng, Zhan, Chunyi, Wu, Youli, Lin, Yi, Li, Kunyu, Qing, Rui, Xu, Lijia
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A rice classification method for the fast and non-destructive differentiation of different varieties is significant in research at present. In this study, fluorescence hyperspectral technology combined with machine learning techniques was used to distinguish five rice varieties by analyzing the fluorescence hyperspectral features of Thai jasmine rice and four rice varieties with a similar appearance to Thai jasmine rice in the wavelength range of 475-1000 nm. The fluorescence hyperspectral data were preprocessed by a first-order derivative (FD) to reduce the background and baseline drift effects of the rice samples. Then, a principal component analysis (PCA) and t-distributed stochastic neighborhood embedding (t-SNE) were used for feature reduction and 3D visualization display. A partial least squares discriminant analysis (PLS-DA), BP neural network (BP), and random forest (RF) were used to build the rice classification models. The RF classification model parameters were optimized using the gray wolf algorithm (GWO). The results show that FD-t-SNE-GWO-RF is the best model for rice classification, with accuracy values of 99.8% and 95.3% for the training and test sets, respectively. The fluorescence hyperspectral technique combined with machine learning is feasible for classifying rice varieties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29030682