Clustered protocadherins

The majority of vertebrate protocadherin (Pcdh) genes are clustered in a single genomic locus, and this remarkable genomic organization is highly conserved from teleosts to humans. These clustered Pcdhs are differentially expressed in individual neurons, they engage in homophilic trans-interactions...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 140; no. 16; pp. 3297 - 3302
Main Authors Chen, Weisheng V., Maniatis, Tom
Format Journal Article
LanguageEnglish
Published England Company of Biologists 15.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The majority of vertebrate protocadherin (Pcdh) genes are clustered in a single genomic locus, and this remarkable genomic organization is highly conserved from teleosts to humans. These clustered Pcdhs are differentially expressed in individual neurons, they engage in homophilic trans-interactions as multimers and they are required for diverse neurodevelopmental processes, including neurite self-avoidance. Here, we provide a concise overview of the molecular and cellular biology of clustered Pcdhs, highlighting how they generate single cell diversity in the vertebrate nervous system and how such diversity may be used in neural circuit assembly.
AbstractList The majority of vertebrate protocadherin (Pcdh) genes are clustered in a single genomic locus, and this remarkable genomic organization is highly conserved from teleosts to humans. These clustered Pcdhs are differentially expressed in individual neurons, they engage in homophilic trans -interactions as multimers and they are required for diverse neurodevelopmental processes, including neurite self-avoidance. Here, we provide a concise overview of the molecular and cellular biology of clustered Pcdhs, highlighting how they generate single cell diversity in the vertebrate nervous system and how such diversity may be used in neural circuit assembly.
The majority of vertebrate protocadherin (Pcdh) genes are clustered in a single genomic locus, and this remarkable genomic organization is highly conserved from teleosts to humans. These clustered Pcdhs are differentially expressed in individual neurons, they engage in homophilic trans-interactions as multimers and they are required for diverse neurodevelopmental processes, including neurite self-avoidance. Here, we provide a concise overview of the molecular and cellular biology of clustered Pcdhs, highlighting how they generate single cell diversity in the vertebrate nervous system and how such diversity may be used in neural circuit assembly.The majority of vertebrate protocadherin (Pcdh) genes are clustered in a single genomic locus, and this remarkable genomic organization is highly conserved from teleosts to humans. These clustered Pcdhs are differentially expressed in individual neurons, they engage in homophilic trans-interactions as multimers and they are required for diverse neurodevelopmental processes, including neurite self-avoidance. Here, we provide a concise overview of the molecular and cellular biology of clustered Pcdhs, highlighting how they generate single cell diversity in the vertebrate nervous system and how such diversity may be used in neural circuit assembly.
The majority of vertebrate protocadherin (Pcdh) genes are clustered in a single genomic locus, and this remarkable genomic organization is highly conserved from teleosts to humans. These clustered Pcdhs are differentially expressed in individual neurons, they engage in homophilic trans-interactions as multimers and they are required for diverse neurodevelopmental processes, including neurite self-avoidance. Here, we provide a concise overview of the molecular and cellular biology of clustered Pcdhs, highlighting how they generate single cell diversity in the vertebrate nervous system and how such diversity may be used in neural circuit assembly.
Author Chen, Weisheng V.
Maniatis, Tom
Author_xml – sequence: 1
  givenname: Weisheng V.
  surname: Chen
  fullname: Chen, Weisheng V.
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
– sequence: 2
  givenname: Tom
  surname: Maniatis
  fullname: Maniatis, Tom
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23900538$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LAzEQxYMo9kMvnjyJRxG2zmSTTXMRpPgFBS96DmmStSvbTU12C_73prQWFcFDmEN-8-bNvAHZb3zjCDlBGCFl9Mq61QgkFBT3SB-ZEJlEKvdJHySHDKXEHhnE-AYAeSHEIenRXALwfNwnp5O6i60Lzp4vg2-90XbuQtXEI3JQ6jq6420dkpe72-fJQzZ9un-c3Ewzkwa12YxqLkuLfGZMqUshubEGOdfOpScYBQHWWK0lWDRjlrMcsWSAySfYmc6H5Hqju-xmC2eNa9qga7UM1UKHD-V1pX7-NNVcvfqVykUuBLIkcLEVCP69c7FViyoaV9e6cb6LKpnBggrK6f8ow6KQnI4hoWffbe38fF0uAZcbwAQfY3DlDkFQ61hUikVtYkkw_IJN1eq28uuVqvqvlk87LY9H
CitedBy_id crossref_primary_10_1038_srep31603
crossref_primary_10_1038_s41588_019_0526_4
crossref_primary_10_1038_s41467_022_34626_6
crossref_primary_10_1016_j_xhgg_2021_100037
crossref_primary_10_1101_gr_246777_118
crossref_primary_10_1186_s13046_014_0068_7
crossref_primary_10_1073_pnas_2318041121
crossref_primary_10_1523_JNEUROSCI_0967_24_2025
crossref_primary_10_1126_science_aal3231
crossref_primary_10_1371_journal_pone_0145801
crossref_primary_10_1080_15592294_2019_1609867
crossref_primary_10_7554_eLife_20930
crossref_primary_10_1016_j_tig_2014_03_003
crossref_primary_10_1016_j_xfss_2024_06_005
crossref_primary_10_1111_jnc_16066
crossref_primary_10_1186_s13072_021_00387_7
crossref_primary_10_1111_jnc_14601
crossref_primary_10_1038_ncomms11252
crossref_primary_10_1016_j_cell_2015_07_038
crossref_primary_10_1073_pnas_2313596120
crossref_primary_10_1002_jcsm_12099
crossref_primary_10_1111_jne_12280
crossref_primary_10_1016_j_semcdb_2022_11_004
crossref_primary_10_1016_j_jid_2024_06_1274
crossref_primary_10_1186_s12915_016_0326_6
crossref_primary_10_1016_j_celrep_2014_10_001
crossref_primary_10_1016_j_tins_2018_07_005
crossref_primary_10_1038_nrn_2015_3
crossref_primary_10_1158_2326_6066_CIR_17_0187
crossref_primary_10_1002_syn_22276
crossref_primary_10_1186_s13072_015_0023_7
crossref_primary_10_3389_fimmu_2017_01146
crossref_primary_10_1038_s41467_021_22201_4
crossref_primary_10_1111_eva_13257
crossref_primary_10_1016_j_neuron_2016_01_020
crossref_primary_10_1038_s41559_018_0673_5
crossref_primary_10_1016_j_neuron_2014_09_011
crossref_primary_10_1002_path_4931
crossref_primary_10_1128_MCB_00760_14
crossref_primary_10_1083_jcb_201902117
crossref_primary_10_1242_dev_196964
crossref_primary_10_1038_s41598_022_06288_3
crossref_primary_10_1093_gigascience_giz152
crossref_primary_10_1126_science_aai8801
crossref_primary_10_1038_s41523_020_0167_x
crossref_primary_10_4103_1673_5374_228724
crossref_primary_10_2217_epi_15_60
crossref_primary_10_3389_fnins_2018_00874
crossref_primary_10_1371_journal_pone_0200211
crossref_primary_10_1126_sciadv_abo7247
crossref_primary_10_1002_cne_24783
crossref_primary_10_1007_s00018_018_2951_4
crossref_primary_10_1016_j_mad_2024_111942
crossref_primary_10_1007_s00795_019_00229_2
crossref_primary_10_1159_000523817
crossref_primary_10_3389_fcell_2021_730014
crossref_primary_10_1016_j_devcel_2014_09_015
crossref_primary_10_1093_cercor_bhw407
crossref_primary_10_1016_j_tcb_2014_08_003
crossref_primary_10_1016_j_tig_2018_08_005
crossref_primary_10_1186_s13072_018_0182_4
crossref_primary_10_1186_s13148_019_0695_0
crossref_primary_10_1093_texcom_tgaa089
crossref_primary_10_7554_eLife_04123
crossref_primary_10_1016_j_celrep_2016_05_003
crossref_primary_10_1007_s00246_018_1861_4
crossref_primary_10_1126_science_aat4311
crossref_primary_10_1016_j_neuron_2014_02_005
crossref_primary_10_1242_jcs_228973
crossref_primary_10_1152_physiolgenomics_00042_2017
crossref_primary_10_1093_gbe_evz098
crossref_primary_10_1038_nn_4256
crossref_primary_10_1101_cshperspect_a024208
crossref_primary_10_3389_fmars_2017_00112
crossref_primary_10_1038_s41598_018_19173_9
crossref_primary_10_1038_ng_3906
crossref_primary_10_1002_pros_23728
crossref_primary_10_3389_fphys_2018_01905
crossref_primary_10_1073_pnas_2300489120
crossref_primary_10_1146_annurev_neuro_061010_113708
crossref_primary_10_7554_eLife_18529
crossref_primary_10_1093_nsr_nwaa002
crossref_primary_10_12688_f1000research_11491_1
crossref_primary_10_1016_j_alcohol_2016_11_009
crossref_primary_10_1016_j_neuron_2016_04_004
crossref_primary_10_1186_s13148_023_01519_4
crossref_primary_10_1038_s41467_024_47758_8
crossref_primary_10_1534_genetics_114_171785
crossref_primary_10_1007_s10147_019_01443_9
crossref_primary_10_1007_s11357_018_0040_0
crossref_primary_10_1096_fj_202300862R
crossref_primary_10_1038_s41467_020_17009_7
crossref_primary_10_1016_j_bbrc_2013_12_138
crossref_primary_10_7554_eLife_07860
crossref_primary_10_1016_j_yexcr_2018_03_016
crossref_primary_10_3389_fnmol_2015_00084
crossref_primary_10_1016_j_neurobiolaging_2015_01_004
crossref_primary_10_1038_s44319_024_00261_z
crossref_primary_10_1038_s41398_020_00984_2
crossref_primary_10_1128_spectrum_01055_22
crossref_primary_10_1038_s44161_024_00522_z
crossref_primary_10_1146_annurev_cellbio_100616_060701
crossref_primary_10_1016_j_semcdb_2017_06_007
crossref_primary_10_1016_j_ydbio_2017_06_016
crossref_primary_10_4236_ajmb_2023_134015
crossref_primary_10_1042_BST20160103
crossref_primary_10_1016_j_cell_2015_09_026
crossref_primary_10_1016_j_cell_2014_07_012
crossref_primary_10_1371_journal_pone_0227212
crossref_primary_10_3389_fnmol_2021_671891
crossref_primary_10_1038_nature14668
crossref_primary_10_3109_01677063_2014_936437
crossref_primary_10_1242_jcs_166306
crossref_primary_10_1016_j_neuron_2015_12_026
crossref_primary_10_3389_fcell_2021_720798
crossref_primary_10_1016_j_cell_2017_05_006
crossref_primary_10_3390_cancers11010107
crossref_primary_10_12659_MSM_895603
crossref_primary_10_1093_nar_gkv727
crossref_primary_10_1038_s41467_022_29748_w
crossref_primary_10_1080_19336918_2014_1000072
crossref_primary_10_1146_annurev_animal_021419_083609
crossref_primary_10_1534_genetics_119_302600
crossref_primary_10_1073_pnas_1713449114
crossref_primary_10_1016_j_reprotox_2016_08_011
crossref_primary_10_1007_s11357_014_9637_0
crossref_primary_10_1007_s12311_018_0984_8
crossref_primary_10_1038_s41467_021_25129_x
crossref_primary_10_3389_fgene_2019_00184
crossref_primary_10_1016_j_cell_2017_03_025
crossref_primary_10_1016_j_ebiom_2017_12_031
crossref_primary_10_1038_srep06263
Cites_doi 10.1038/emboj.2012.60
10.1128/MCB.01708-06
10.3389/fnmol.2012.00090
10.1242/dev.027912
10.1523/JNEUROSCI.2818-09.2009
10.1074/jbc.M408771200
10.1073/pnas.1205074109
10.1074/jbc.M602663200
10.1074/jbc.M111.245605
10.1523/JNEUROSCI.5478-08.2009
10.3389/fnmol.2011.00054
10.1523/JNEUROSCI.0969-12.2012
10.1101/gr.167301
10.1038/ng1500
10.1016/j.tcb.2012.03.004
10.1002/j.1460-2075.1993.tb05878.x
10.1242/jcs.108.12.3765
10.1186/1471-2148-7-49
10.1016/S0896-6273(00)80495-X
10.4161/cam.5.2.14374
10.1073/pnas.0407931101
10.1523/JNEUROSCI.03-12-02474.1983
10.1016/S0092-8674(00)80789-8
10.1016/S0896-6273(00)80796-5
10.1038/nrn2043
10.1074/jbc.M414359200
10.1073/pnas.0609445104
10.1101/gad.1004802
10.3389/fnmol.2012.00097
10.1111/j.1460-9568.2008.06052.x
10.3109/10409238.2012.694845
10.1534/genetics.104.037606
10.1074/jbc.M412909200
10.1093/nar/gkr1260
10.1242/dev.026807
10.1073/pnas.1219280110
10.1016/j.celrep.2012.06.014
10.1016/j.neuron.2012.01.028
10.1016/j.mcn.2008.12.002
10.1038/nature08431
10.1074/mcp.M900343-MCP200
10.1002/jnr.10618
10.1038/nature11305
10.1073/pnas.1114357108
10.1146/annurev.cellbio.24.110707.175250
10.1016/S0896-6273(02)01090-5
10.1038/nature06099
10.1016/S1097-2765(02)00578-6
10.1016/j.cell.2010.10.009
10.1074/jbc.M807417200
10.1016/j.neuron.2012.06.039
10.1074/jbc.M605677200
10.1093/jmcb/mjs034
10.1073/pnas.1013105107
10.1523/JNEUROSCI.23-12-05096.2003
10.1016/j.mcn.2005.05.001
10.1073/pnas.1004526107
10.1371/journal.pgen.1000650
10.1016/j.mcn.2008.01.016
10.1073/pnas.1007182107
10.1016/j.cell.2007.04.013
ContentType Journal Article
Copyright 2013. Published by The Company of Biologists Ltd 2013
Copyright_xml – notice: 2013. Published by The Company of Biologists Ltd 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
8FD
F1W
FR3
H95
L.G
P64
RC3
5PM
DOI 10.1242/dev.090621
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1477-9129
EndPage 3302
ExternalDocumentID PMC3737714
23900538
10_1242_dev_090621
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH108579
GroupedDBID ---
-DZ
-ET
-~X
.55
0R~
186
18M
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAYXX
ABZEH
ACGFS
ACMFV
ACPRK
ACREN
ADBBV
ADFRT
ADVGF
ADXHL
AENEX
AETEA
AFFNX
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
HZ~
INIJC
KQ8
O9-
OK1
P2P
R.V
RCB
RHI
SJN
TR2
TWZ
UPT
W8F
WH7
WOQ
X7M
XJT
XSW
.GJ
3O-
9M8
ABJNI
ABTAH
AGCDD
AI.
C1A
CGR
CUY
CVF
ECM
EIF
H~9
MVM
NPM
OHT
RHF
UQL
VH1
VXZ
XOL
ZCG
ZGI
ZXP
ZY4
7X8
8FD
F1W
FR3
H95
L.G
P64
RC3
5PM
ID FETCH-LOGICAL-c477t-b2a59fd15bccfaf795cdc155aee5ae742070dcdaa90d1c8434311f4011470dba3
ISSN 0950-1991
1477-9129
IngestDate Thu Aug 21 18:07:13 EDT 2025
Tue Aug 05 09:53:51 EDT 2025
Fri Jul 11 01:21:01 EDT 2025
Wed Feb 19 02:42:31 EST 2025
Tue Jul 01 00:41:47 EDT 2025
Thu Apr 24 23:11:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Single cell diversity
CTCF
Cohesin
Homophilic interaction
Promoter choice
Self-avoidance
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-b2a59fd15bccfaf795cdc155aee5ae742070dcdaa90d1c8434311f4011470dba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://doi.org/10.1242/dev.090621
PMID 23900538
PQID 1416695280
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3737714
proquest_miscellaneous_1551627252
proquest_miscellaneous_1416695280
pubmed_primary_23900538
crossref_primary_10_1242_dev_090621
crossref_citationtrail_10_1242_dev_090621
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-15
PublicationDateYYYYMMDD 2013-08-15
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Development (Cambridge)
PublicationTitleAlternate Development
PublicationYear 2013
Publisher Company of Biologists
Publisher_xml – name: Company of Biologists
References Sano (2021042622092446700_R46) 1993; 12
Hasegawa (2021042622092446700_R17) 2012; 5
Zipursky (2021042622092446700_R61) 2010; 143
Kohmura (2021042622092446700_R30) 1998; 20
Haas (2021042622092446700_R13) 2005; 280
Garrett (2021042622092446700_R9) 2009; 29
Kawauchi (2021042622092446700_R27) 2009; 5
Hirayama (2021042622092446700_R22) 2012; 2
Remeseiro (2021042622092446700_R44) 2012; 31
Hattori (2021042622092446700_R19) 2008; 24
Guo (2021042622092446700_R12) 2012; 109
Weiner (2021042622092446700_R55) 2005; 102
Rajagopal (2021042622092446700_R42) 2012; 47
Brasch (2021042622092446700_R2) 2012; 22
Murata (2021042622092446700_R37) 2004; 279
Katori (2021042622092446700_R26) 2009; 29
Frank (2021042622092446700_R8) 2005; 29
Obata (2021042622092446700_R38) 1995; 108
Garrett (2021042622092446700_R10) 2012; 74
Hattori (2021042622092446700_R18) 2007; 449
Kim (2021042622092446700_R29) 2011; 5
Phillips (2021042622092446700_R39) 2003; 23
Yu (2021042622092446700_R60) 2007; 7
Li (2021042622092446700_R34) 2012; 32
Fernández-Monreal (2021042622092446700_R7) 2009; 40
Golan-Mashiach (2021042622092446700_R11) 2012; 40
Hambsch (2021042622092446700_R14) 2005; 280
Yokota (2021042622092446700_R59) 2011; 286
Suo (2021042622092446700_R50) 2012; 4
Han (2021042622092446700_R15) 2010; 9
Wang (2021042622092446700_R54) 2002; 36
Chen (2021042622092446700_R4) 2009; 284
Lefebvre (2021042622092446700_R33) 2012; 488
Schalm (2021042622092446700_R47) 2010; 107
Prasad (2021042622092446700_R40) 2011; 4
Hattori (2021042622092446700_R20) 2009; 461
Kallenbach (2021042622092446700_R24) 2003; 72
Bonn (2021042622092446700_R1) 2007; 27
Wu (2021042622092446700_R57) 1999; 97
Prasad (2021042622092446700_R41) 2008; 135
Schreiner (2021042622092446700_R48) 2010; 107
Chen (2021042622092446700_R5) 2012; 75
Takeichi (2021042622092446700_R51) 2007; 8
Junghans (2021042622092446700_R23) 2008; 27
Hirano (2021042622092446700_R21) 2012; 5
Wu (2021042622092446700_R56) 2005; 169
Matthews (2021042622092446700_R35) 2007; 129
Wang (2021042622092446700_R53) 2002; 16
Kehayova (2021042622092446700_R28) 2011; 108
Hasegawa (2021042622092446700_R16) 2008; 38
Reiss (2021042622092446700_R43) 2006; 281
Kaneko (2021042622092446700_R25) 2006; 281
Shapiro (2021042622092446700_R49) 1999; 23
Wu (2021042622092446700_R58) 2001; 11
Ribich (2021042622092446700_R45) 2006; 103
Lefebvre (2021042622092446700_R32) 2008; 135
Monahan (2021042622092446700_R36) 2012; 109
Buchanan (2021042622092446700_R3) 2010; 107
Esumi (2021042622092446700_R6) 2005; 37
Kramer (2021042622092446700_R31) 1983; 3
Tasic (2021042622092446700_R52) 2002; 10
15574493 - Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):8-14
22854024 - Cell Rep. 2012 Aug 30;2(2):345-57
22915120 - J Neurosci. 2012 Aug 22;32(34):11780-97
20616001 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13894-9
18279309 - Eur J Neurosci. 2008 Feb;27(3):559-71
23204437 - Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21081-6
21173574 - Cell Adh Migr. 2011 Mar-Apr;5(2):97-105
22415368 - EMBO J. 2012 May 2;31(9):2090-102
19763162 - PLoS Genet. 2009 Sep;5(9):e1000650
21771796 - J Biol Chem. 2011 Sep 9;286(36):31885-95
6317810 - J Neurosci. 1983 Dec;3(12):2474-86
22884324 - Neuron. 2012 Aug 9;75(3):402-9
20876099 - Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17774-9
17482551 - Cell. 2007 May 4;129(3):593-604
15347688 - J Biol Chem. 2004 Nov 19;279(47):49508-16
15640798 - Nat Genet. 2005 Feb;37(2):171-6
15744052 - Genetics. 2005 Apr;169(4):2179-88
19625505 - J Neurosci. 2009 Jul 22;29(29):9137-47
15964765 - Mol Cell Neurosci. 2005 Aug;29(4):603-16
10380929 - Cell. 1999 Jun 11;97(6):779-90
21949399 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17195-200
19794492 - Nature. 2009 Oct 1;461(7264):644-8
22550178 - Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9125-30
19843561 - Mol Cell Proteomics. 2010 Jan;9(1):71-83
12150904 - Mol Cell. 2002 Jul;10(1):21-33
22969705 - Front Mol Neurosci. 2012 Aug 31;5:90
18353676 - Mol Cell Neurosci. 2008 May;38(1):66-79
15711011 - J Biol Chem. 2005 Apr 22;280(16):15888-97
9655502 - Neuron. 1998 Jun;20(6):1137-51
23087612 - Front Mol Neurosci. 2012 Oct 16;5:97
11230163 - Genome Res. 2001 Mar;11(3):389-404
16893882 - J Biol Chem. 2006 Oct 13;281(41):30551-60
12832533 - J Neurosci. 2003 Jun 15;23(12):5096-104
17133224 - Nat Rev Neurosci. 2007 Jan;8(1):11-20
12467588 - Neuron. 2002 Dec 5;36(5):843-54
18837673 - Annu Rev Cell Dev Biol. 2008;24:597-620
22275881 - Front Mol Neurosci. 2011 Dec 23;4:54
17851526 - Nature. 2007 Sep 13;449(7159):223-7
19136062 - Mol Cell Neurosci. 2009 Mar;40(3):344-53
12749019 - J Neurosci Res. 2003 Jun 1;72(5):549-56
22842903 - Nature. 2012 Aug 23;488(7412):517-21
19029045 - Development. 2008 Dec;135(24):4153-64
17172445 - Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19719-24
22730554 - J Mol Cell Biol. 2012 Dec;4(6):362-76
20679223 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14893-8
19029044 - Development. 2008 Dec;135(24):4141-51
19776259 - J Neurosci. 2009 Sep 23;29(38):11723-31
17403907 - Mol Cell Biol. 2007 Jun;27(11):4121-32
15611067 - J Biol Chem. 2005 Mar 11;280(10):9313-9
22555008 - Trends Cell Biol. 2012 Jun;22(6):299-310
10433255 - Neuron. 1999 Jul;23(3):427-30
22542181 - Neuron. 2012 Apr 26;74(2):269-76
16751190 - J Biol Chem. 2006 Aug 4;281(31):21735-44
8508762 - EMBO J. 1993 Jun;12(6):2249-56
21029858 - Cell. 2010 Oct 29;143(3):343-53
17394664 - BMC Evol Biol. 2007;7:49
22681236 - Crit Rev Biochem Mol Biol. 2012 Jul-Aug;47(4):391-406
19047047 - J Biol Chem. 2009 Jan 30;284(5):2880-90
12154121 - Genes Dev. 2002 Aug 1;16(15):1890-905
22210889 - Nucleic Acids Res. 2012 Apr;40(8):3378-91
8719883 - J Cell Sci. 1995 Dec;108 ( Pt 12):3765-73
References_xml – volume: 31
  start-page: 2090
  year: 2012
  ident: 2021042622092446700_R44
  article-title: A unique role of cohesin-SA1 in gene regulation and development
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.60
– volume: 27
  start-page: 4121
  year: 2007
  ident: 2021042622092446700_R1
  article-title: Combinatorial expression of alpha- and gamma-protocadherins alters their presenilin-dependent processing
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01708-06
– volume: 5
  start-page: 90
  year: 2012
  ident: 2021042622092446700_R21
  article-title: Single-neuron diversity generated by Protocadherin-beta cluster in mouse central and peripheral nervous systems
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2012.00090
– volume: 135
  start-page: 4141
  year: 2008
  ident: 2021042622092446700_R32
  article-title: gamma-Protocadherins regulate neuronal survival but are dispensable for circuit formation in retina
  publication-title: Development
  doi: 10.1242/dev.027912
– volume: 29
  start-page: 11723
  year: 2009
  ident: 2021042622092446700_R9
  article-title: Control of CNS synapse development by {gamma}-protocadherin-mediated astrocyte-neuron contact
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2818-09.2009
– volume: 279
  start-page: 49508
  year: 2004
  ident: 2021042622092446700_R37
  article-title: Interaction with protocadherin-gamma regulates the cell surface expression of protocadherin-alpha
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M408771200
– volume: 109
  start-page: 9125
  year: 2012
  ident: 2021042622092446700_R36
  article-title: Role of CCCTC binding factor (CTCF) and cohesin in the generation of single-cell diversity of protocadherin-α gene expression
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1205074109
– volume: 281
  start-page: 21735
  year: 2006
  ident: 2021042622092446700_R43
  article-title: Regulated ADAM10-dependent ectodomain shedding of gamma-protocadherin C3 modulates cell-cell adhesion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M602663200
– volume: 286
  start-page: 31885
  year: 2011
  ident: 2021042622092446700_R59
  article-title: Identification of the cluster control region for the protocadherin-beta genes located beyond the protocadherin-gamma cluster
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.245605
– volume: 29
  start-page: 9137
  year: 2009
  ident: 2021042622092446700_R26
  article-title: Protocadherin-alpha family is required for serotonergic projections to appropriately innervate target brain areas
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5478-08.2009
– volume: 4
  start-page: 54
  year: 2011
  ident: 2021042622092446700_R40
  article-title: Direct and indirect regulation of spinal cord Ia afferent terminal formation by the gamma-protocadherins
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2011.00054
– volume: 32
  start-page: 11780
  year: 2012
  ident: 2021042622092446700_R34
  article-title: Molecular and functional interaction between protocadherin-gammaC5 and GABAA receptors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0969-12.2012
– volume: 11
  start-page: 389
  year: 2001
  ident: 2021042622092446700_R58
  article-title: Comparative DNA sequence analysis of mouse and human protocadherin gene clusters
  publication-title: Genome Res.
  doi: 10.1101/gr.167301
– volume: 37
  start-page: 171
  year: 2005
  ident: 2021042622092446700_R6
  article-title: Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons
  publication-title: Nat. Genet.
  doi: 10.1038/ng1500
– volume: 22
  start-page: 299
  year: 2012
  ident: 2021042622092446700_R2
  article-title: Thinking outside the cell: how cadherins drive adhesion
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2012.03.004
– volume: 12
  start-page: 2249
  year: 1993
  ident: 2021042622092446700_R46
  article-title: Protocadherins: a large family of cadherin-related molecules in central nervous system
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1993.tb05878.x
– volume: 108
  start-page: 3765
  year: 1995
  ident: 2021042622092446700_R38
  article-title: Protocadherin Pcdh2 shows properties similar to, but distinct from, those of classical cadherins
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.108.12.3765
– volume: 7
  start-page: 49
  year: 2007
  ident: 2021042622092446700_R60
  article-title: Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-7-49
– volume: 20
  start-page: 1137
  year: 1998
  ident: 2021042622092446700_R30
  article-title: Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80495-X
– volume: 5
  start-page: 97
  year: 2011
  ident: 2021042622092446700_R29
  article-title: Non-clustered protocadherin
  publication-title: Cell Adh. Migr.
  doi: 10.4161/cam.5.2.14374
– volume: 102
  start-page: 8
  year: 2005
  ident: 2021042622092446700_R55
  article-title: Gamma protocadherins are required for synaptic development in the spinal cord
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0407931101
– volume: 3
  start-page: 2474
  year: 1983
  ident: 2021042622092446700_R31
  article-title: Formation of the receptive fields of leech mechanosensory neurons during embryonic development
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.03-12-02474.1983
– volume: 97
  start-page: 779
  year: 1999
  ident: 2021042622092446700_R57
  article-title: A striking organization of a large family of human neural cadherin-like cell adhesion genes
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80789-8
– volume: 23
  start-page: 427
  year: 1999
  ident: 2021042622092446700_R49
  article-title: The diversity of cadherins and implications for a synaptic adhesive code in the CNS
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80796-5
– volume: 8
  start-page: 11
  year: 2007
  ident: 2021042622092446700_R51
  article-title: The cadherin superfamily in neuronal connections and interactions
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2043
– volume: 280
  start-page: 15888
  year: 2005
  ident: 2021042622092446700_R14
  article-title: gamma-Protocadherins, presenilin-mediated release of C-terminal fragment promotes locus expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M414359200
– volume: 103
  start-page: 19719
  year: 2006
  ident: 2021042622092446700_R45
  article-title: Identification of long-range regulatory elements in the protocadherin-alpha gene cluster
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0609445104
– volume: 16
  start-page: 1890
  year: 2002
  ident: 2021042622092446700_R53
  article-title: Molecular mechanisms governing Pcdh-gamma gene expression: evidence for a multiple promoter and cis-alternative splicing model
  publication-title: Genes Dev.
  doi: 10.1101/gad.1004802
– volume: 5
  start-page: 97
  year: 2012
  ident: 2021042622092446700_R17
  article-title: Constitutively expressed Protocadherin-alpha regulates the coalescence and elimination of homotypic olfactory axons through its cytoplasmic region
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2012.00097
– volume: 27
  start-page: 559
  year: 2008
  ident: 2021042622092446700_R23
  article-title: Postsynaptic and differential localization to neuronal subtypes of protocadherin beta16 in the mammalian central nervous system
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2008.06052.x
– volume: 47
  start-page: 391
  year: 2012
  ident: 2021042622092446700_R42
  article-title: Signaling from the secretory granule to the nucleus
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409238.2012.694845
– volume: 169
  start-page: 2179
  year: 2005
  ident: 2021042622092446700_R56
  article-title: Comparative genomics and diversifying selection of the clustered vertebrate protocadherin genes
  publication-title: Genetics
  doi: 10.1534/genetics.104.037606
– volume: 280
  start-page: 9313
  year: 2005
  ident: 2021042622092446700_R13
  article-title: Presenilin-dependent processing and nuclear function of gamma-protocadherins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M412909200
– volume: 40
  start-page: 3378
  year: 2012
  ident: 2021042622092446700_R11
  article-title: Identification of CTCF as a master regulator of the clustered protocadherin genes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1260
– volume: 135
  start-page: 4153
  year: 2008
  ident: 2021042622092446700_R41
  article-title: A differential developmental pattern of spinal interneuron apoptosis during synaptogenesis: insights from genetic analyses of the protocadherin-gamma gene cluster
  publication-title: Development
  doi: 10.1242/dev.026807
– volume: 109
  start-page: 21081
  year: 2012
  ident: 2021042622092446700_R12
  article-title: CTCF/cohesin-mediated DNA looping is required for protocadherin α promoter choice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1219280110
– volume: 2
  start-page: 345
  year: 2012
  ident: 2021042622092446700_R22
  article-title: CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2012.06.014
– volume: 74
  start-page: 269
  year: 2012
  ident: 2021042622092446700_R10
  article-title: γ-protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.01.028
– volume: 40
  start-page: 344
  year: 2009
  ident: 2021042622092446700_R7
  article-title: Gamma-protocadherin homophilic interaction and intracellular trafficking is controlled by the cytoplasmic domain in neurons
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/j.mcn.2008.12.002
– volume: 461
  start-page: 644
  year: 2009
  ident: 2021042622092446700_R20
  article-title: Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms
  publication-title: Nature
  doi: 10.1038/nature08431
– volume: 9
  start-page: 71
  year: 2010
  ident: 2021042622092446700_R15
  article-title: Proteomics analysis reveals overlapping functions of clustered protocadherins
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.M900343-MCP200
– volume: 72
  start-page: 549
  year: 2003
  ident: 2021042622092446700_R24
  article-title: Changes in subcellular distribution of protocadherin gamma proteins accompany maturation of spinal neurons
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.10618
– volume: 488
  start-page: 517
  year: 2012
  ident: 2021042622092446700_R33
  article-title: Protocadherins mediate dendritic self-avoidance in the mammalian nervous system
  publication-title: Nature
  doi: 10.1038/nature11305
– volume: 108
  start-page: 17195
  year: 2011
  ident: 2021042622092446700_R28
  article-title: Regulatory elements required for the activation and repression of the protocadherin-alpha gene cluster
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1114357108
– volume: 24
  start-page: 597
  year: 2008
  ident: 2021042622092446700_R19
  article-title: Dscam-mediated cell recognition regulates neural circuit formation
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.24.110707.175250
– volume: 36
  start-page: 843
  year: 2002
  ident: 2021042622092446700_R54
  article-title: Gamma protocadherins are required for survival of spinal interneurons
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)01090-5
– volume: 449
  start-page: 223
  year: 2007
  ident: 2021042622092446700_R18
  article-title: Dscam diversity is essential for neuronal wiring and self-recognition
  publication-title: Nature
  doi: 10.1038/nature06099
– volume: 10
  start-page: 21
  year: 2002
  ident: 2021042622092446700_R52
  article-title: Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00578-6
– volume: 143
  start-page: 343
  year: 2010
  ident: 2021042622092446700_R61
  article-title: Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly
  publication-title: Cell
  doi: 10.1016/j.cell.2010.10.009
– volume: 284
  start-page: 2880
  year: 2009
  ident: 2021042622092446700_R4
  article-title: alpha- and gamma-Protocadherins negatively regulate PYK2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807417200
– volume: 75
  start-page: 402
  year: 2012
  ident: 2021042622092446700_R5
  article-title: Functional significance of isoform diversification in the protocadherin gamma gene cluster
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.06.039
– volume: 281
  start-page: 30551
  year: 2006
  ident: 2021042622092446700_R25
  article-title: Allelic gene regulation of Pcdh-alpha and Pcdh-gamma clusters involving both monoallelic and biallelic expression in single Purkinje cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605677200
– volume: 4
  start-page: 362
  year: 2012
  ident: 2021042622092446700_R50
  article-title: Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase
  publication-title: J. Mol. Cell Biol.
  doi: 10.1093/jmcb/mjs034
– volume: 107
  start-page: 17774
  year: 2010
  ident: 2021042622092446700_R3
  article-title: Proteolytic processing of protocadherin proteins requires endocytosis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1013105107
– volume: 23
  start-page: 5096
  year: 2003
  ident: 2021042622092446700_R39
  article-title: Gamma-protocadherins are targeted to subsets of synapses and intracellular organelles in neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-12-05096.2003
– volume: 29
  start-page: 603
  year: 2005
  ident: 2021042622092446700_R8
  article-title: Differential expression of individual gamma-protocadherins during mouse brain development
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/j.mcn.2005.05.001
– volume: 107
  start-page: 14893
  year: 2010
  ident: 2021042622092446700_R48
  article-title: Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1004526107
– volume: 5
  start-page: e1000650
  year: 2009
  ident: 2021042622092446700_R27
  article-title: Multiple organ system defects and transcriptional dysregulation in the Nipbl(+/-) mouse, a model of Cornelia de Lange Syndrome
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000650
– volume: 38
  start-page: 66
  year: 2008
  ident: 2021042622092446700_R16
  article-title: The protocadherin-alpha family is involved in axonal coalescence of olfactory sensory neurons into glomeruli of the olfactory bulb in mouse
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/j.mcn.2008.01.016
– volume: 107
  start-page: 13894
  year: 2010
  ident: 2021042622092446700_R47
  article-title: Phosphorylation of protocadherin proteins by the receptor tyrosine kinase Ret
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1007182107
– volume: 129
  start-page: 593
  year: 2007
  ident: 2021042622092446700_R35
  article-title: Dendrite self-avoidance is controlled by Dscam
  publication-title: Cell
  doi: 10.1016/j.cell.2007.04.013
– reference: 22550178 - Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9125-30
– reference: 10433255 - Neuron. 1999 Jul;23(3):427-30
– reference: 19625505 - J Neurosci. 2009 Jul 22;29(29):9137-47
– reference: 11230163 - Genome Res. 2001 Mar;11(3):389-404
– reference: 20876099 - Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17774-9
– reference: 19029045 - Development. 2008 Dec;135(24):4153-64
– reference: 19047047 - J Biol Chem. 2009 Jan 30;284(5):2880-90
– reference: 9655502 - Neuron. 1998 Jun;20(6):1137-51
– reference: 18279309 - Eur J Neurosci. 2008 Feb;27(3):559-71
– reference: 22542181 - Neuron. 2012 Apr 26;74(2):269-76
– reference: 22915120 - J Neurosci. 2012 Aug 22;32(34):11780-97
– reference: 21029858 - Cell. 2010 Oct 29;143(3):343-53
– reference: 20616001 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13894-9
– reference: 22210889 - Nucleic Acids Res. 2012 Apr;40(8):3378-91
– reference: 12749019 - J Neurosci Res. 2003 Jun 1;72(5):549-56
– reference: 17482551 - Cell. 2007 May 4;129(3):593-604
– reference: 15640798 - Nat Genet. 2005 Feb;37(2):171-6
– reference: 8719883 - J Cell Sci. 1995 Dec;108 ( Pt 12):3765-73
– reference: 22842903 - Nature. 2012 Aug 23;488(7412):517-21
– reference: 6317810 - J Neurosci. 1983 Dec;3(12):2474-86
– reference: 23087612 - Front Mol Neurosci. 2012 Oct 16;5:97
– reference: 20679223 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14893-8
– reference: 22730554 - J Mol Cell Biol. 2012 Dec;4(6):362-76
– reference: 22555008 - Trends Cell Biol. 2012 Jun;22(6):299-310
– reference: 17133224 - Nat Rev Neurosci. 2007 Jan;8(1):11-20
– reference: 15611067 - J Biol Chem. 2005 Mar 11;280(10):9313-9
– reference: 23204437 - Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21081-6
– reference: 22681236 - Crit Rev Biochem Mol Biol. 2012 Jul-Aug;47(4):391-406
– reference: 15347688 - J Biol Chem. 2004 Nov 19;279(47):49508-16
– reference: 17403907 - Mol Cell Biol. 2007 Jun;27(11):4121-32
– reference: 15574493 - Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):8-14
– reference: 16893882 - J Biol Chem. 2006 Oct 13;281(41):30551-60
– reference: 15711011 - J Biol Chem. 2005 Apr 22;280(16):15888-97
– reference: 19843561 - Mol Cell Proteomics. 2010 Jan;9(1):71-83
– reference: 22275881 - Front Mol Neurosci. 2011 Dec 23;4:54
– reference: 22969705 - Front Mol Neurosci. 2012 Aug 31;5:90
– reference: 19029044 - Development. 2008 Dec;135(24):4141-51
– reference: 22854024 - Cell Rep. 2012 Aug 30;2(2):345-57
– reference: 18837673 - Annu Rev Cell Dev Biol. 2008;24:597-620
– reference: 19776259 - J Neurosci. 2009 Sep 23;29(38):11723-31
– reference: 15964765 - Mol Cell Neurosci. 2005 Aug;29(4):603-16
– reference: 16751190 - J Biol Chem. 2006 Aug 4;281(31):21735-44
– reference: 22884324 - Neuron. 2012 Aug 9;75(3):402-9
– reference: 21173574 - Cell Adh Migr. 2011 Mar-Apr;5(2):97-105
– reference: 22415368 - EMBO J. 2012 May 2;31(9):2090-102
– reference: 17394664 - BMC Evol Biol. 2007;7:49
– reference: 12832533 - J Neurosci. 2003 Jun 15;23(12):5096-104
– reference: 21771796 - J Biol Chem. 2011 Sep 9;286(36):31885-95
– reference: 19763162 - PLoS Genet. 2009 Sep;5(9):e1000650
– reference: 19794492 - Nature. 2009 Oct 1;461(7264):644-8
– reference: 19136062 - Mol Cell Neurosci. 2009 Mar;40(3):344-53
– reference: 12154121 - Genes Dev. 2002 Aug 1;16(15):1890-905
– reference: 12150904 - Mol Cell. 2002 Jul;10(1):21-33
– reference: 8508762 - EMBO J. 1993 Jun;12(6):2249-56
– reference: 18353676 - Mol Cell Neurosci. 2008 May;38(1):66-79
– reference: 15744052 - Genetics. 2005 Apr;169(4):2179-88
– reference: 17851526 - Nature. 2007 Sep 13;449(7159):223-7
– reference: 12467588 - Neuron. 2002 Dec 5;36(5):843-54
– reference: 21949399 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17195-200
– reference: 10380929 - Cell. 1999 Jun 11;97(6):779-90
– reference: 17172445 - Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19719-24
SSID ssj0003677
Score 2.4754984
SecondaryResourceType review_article
Snippet The majority of vertebrate protocadherin (Pcdh) genes are clustered in a single genomic locus, and this remarkable genomic organization is highly conserved...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3297
SubjectTerms Animals
Binding Sites
Cadherins - genetics
Cadherins - metabolism
CCCTC-Binding Factor
Development at A Glance
Exons
Humans
Mice
Multigene Family
Neural Pathways - metabolism
Promoter Regions, Genetic
Protein Interaction Mapping
Protein Isoforms - genetics
Protein Isoforms - metabolism
Purkinje Cells - cytology
Purkinje Cells - metabolism
Repressor Proteins - genetics
Repressor Proteins - metabolism
Synapses - metabolism
Teleostei
Transcription, Genetic
Title Clustered protocadherins
URI https://www.ncbi.nlm.nih.gov/pubmed/23900538
https://www.proquest.com/docview/1416695280
https://www.proquest.com/docview/1551627252
https://pubmed.ncbi.nlm.nih.gov/PMC3737714
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEYhLBeXRpYAWwYVDSmwncXKsVq0KdMtlV6y4RLbjFKQqi2gWCX59Z-w8aYUKh41WjuUk8yXjGXu-GYA3JmVMlZxR3lYeROhjBNrKIhCGar0Ii63Ed56fJsfL6MMqXvV5iB27pNb75ve1vJL_QRXbEFdiyf4Dst2g2ID_EV88IsJ4vBHGs_MN5TmwRPVf1zgrFY7NdzG0OAdRQW7HtuVoDZYAZg1D47OlAPnqrA98nauKoPOhRP4B2iUCKteQBp4k2a31hRRRwkZqz6dJavEdajHBfcxsMyMK4UjRV7UtTu8oosL-3A8p3THr55R2H_30U360PDnJF4erxW24w9GWd37v-4_ddCkSVx6zu8cmhyyO_a4feWw1XHEF_oxoHZgIiwew3dj20wMP1EO4ZasduOurff7agXvzJo4BG7-sXeMj2O0wnI4xfAzLo8PF7DhoqlUEJpKyDjRXcVYWLNbGlKqUWWwKg9aashZ_MuKoXAtTKJWFBTMpMXoZKyNySPGEVuIJbFXryu7CNEOzT8eliBKdoZEhU2sTpcIEPyqtRSIm8LaVRm6aVO5UUeQ8J5cOJZej5HIvuQm87vp-9wlMru31qhVqjvqFNo1UZdebC3QNWZJkMU_Dv_Sh3VYuecwn8NQD0V2Li4wUfToBOYKo60D5zcdnqm9fXZ5zIYWULHp2g-vuwf3-xX8OW_WPjX2B1mKtX7q37RL_32n9
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustered+protocadherins&rft.jtitle=Development+%28Cambridge%29&rft.au=Chen%2C+Weisheng+V&rft.au=Maniatis%2C+Tom&rft.date=2013-08-15&rft.issn=0950-1991&rft.volume=140&rft.issue=16&rft.spage=3297&rft.epage=3302&rft_id=info:doi/10.1242%2Fdev.090621&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon