Clustered protocadherins
The majority of vertebrate protocadherin (Pcdh) genes are clustered in a single genomic locus, and this remarkable genomic organization is highly conserved from teleosts to humans. These clustered Pcdhs are differentially expressed in individual neurons, they engage in homophilic trans-interactions...
Saved in:
Published in | Development (Cambridge) Vol. 140; no. 16; pp. 3297 - 3302 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Company of Biologists
15.08.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The majority of vertebrate protocadherin (Pcdh) genes are clustered in a single genomic locus, and this remarkable genomic organization is highly conserved from teleosts to humans. These clustered Pcdhs are differentially expressed in individual neurons, they engage in homophilic trans-interactions as multimers and they are required for diverse neurodevelopmental processes, including neurite self-avoidance. Here, we provide a concise overview of the molecular and cellular biology of clustered Pcdhs, highlighting how they generate single cell diversity in the vertebrate nervous system and how such diversity may be used in neural circuit assembly. |
---|---|
AbstractList | The majority of vertebrate protocadherin (Pcdh) genes are clustered in a single genomic locus, and this remarkable genomic organization is highly conserved from teleosts to humans. These clustered Pcdhs are differentially expressed in individual neurons, they engage in homophilic
trans
-interactions as multimers and they are required for diverse neurodevelopmental processes, including neurite self-avoidance. Here, we provide a concise overview of the molecular and cellular biology of clustered Pcdhs, highlighting how they generate single cell diversity in the vertebrate nervous system and how such diversity may be used in neural circuit assembly. The majority of vertebrate protocadherin (Pcdh) genes are clustered in a single genomic locus, and this remarkable genomic organization is highly conserved from teleosts to humans. These clustered Pcdhs are differentially expressed in individual neurons, they engage in homophilic trans-interactions as multimers and they are required for diverse neurodevelopmental processes, including neurite self-avoidance. Here, we provide a concise overview of the molecular and cellular biology of clustered Pcdhs, highlighting how they generate single cell diversity in the vertebrate nervous system and how such diversity may be used in neural circuit assembly.The majority of vertebrate protocadherin (Pcdh) genes are clustered in a single genomic locus, and this remarkable genomic organization is highly conserved from teleosts to humans. These clustered Pcdhs are differentially expressed in individual neurons, they engage in homophilic trans-interactions as multimers and they are required for diverse neurodevelopmental processes, including neurite self-avoidance. Here, we provide a concise overview of the molecular and cellular biology of clustered Pcdhs, highlighting how they generate single cell diversity in the vertebrate nervous system and how such diversity may be used in neural circuit assembly. The majority of vertebrate protocadherin (Pcdh) genes are clustered in a single genomic locus, and this remarkable genomic organization is highly conserved from teleosts to humans. These clustered Pcdhs are differentially expressed in individual neurons, they engage in homophilic trans-interactions as multimers and they are required for diverse neurodevelopmental processes, including neurite self-avoidance. Here, we provide a concise overview of the molecular and cellular biology of clustered Pcdhs, highlighting how they generate single cell diversity in the vertebrate nervous system and how such diversity may be used in neural circuit assembly. |
Author | Chen, Weisheng V. Maniatis, Tom |
Author_xml | – sequence: 1 givenname: Weisheng V. surname: Chen fullname: Chen, Weisheng V. organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA – sequence: 2 givenname: Tom surname: Maniatis fullname: Maniatis, Tom organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23900538$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LAzEQxYMo9kMvnjyJRxG2zmSTTXMRpPgFBS96DmmStSvbTU12C_73prQWFcFDmEN-8-bNvAHZb3zjCDlBGCFl9Mq61QgkFBT3SB-ZEJlEKvdJHySHDKXEHhnE-AYAeSHEIenRXALwfNwnp5O6i60Lzp4vg2-90XbuQtXEI3JQ6jq6420dkpe72-fJQzZ9un-c3Ewzkwa12YxqLkuLfGZMqUshubEGOdfOpScYBQHWWK0lWDRjlrMcsWSAySfYmc6H5Hqju-xmC2eNa9qga7UM1UKHD-V1pX7-NNVcvfqVykUuBLIkcLEVCP69c7FViyoaV9e6cb6LKpnBggrK6f8ow6KQnI4hoWffbe38fF0uAZcbwAQfY3DlDkFQ61hUikVtYkkw_IJN1eq28uuVqvqvlk87LY9H |
CitedBy_id | crossref_primary_10_1038_srep31603 crossref_primary_10_1038_s41588_019_0526_4 crossref_primary_10_1038_s41467_022_34626_6 crossref_primary_10_1016_j_xhgg_2021_100037 crossref_primary_10_1101_gr_246777_118 crossref_primary_10_1186_s13046_014_0068_7 crossref_primary_10_1073_pnas_2318041121 crossref_primary_10_1523_JNEUROSCI_0967_24_2025 crossref_primary_10_1126_science_aal3231 crossref_primary_10_1371_journal_pone_0145801 crossref_primary_10_1080_15592294_2019_1609867 crossref_primary_10_7554_eLife_20930 crossref_primary_10_1016_j_tig_2014_03_003 crossref_primary_10_1016_j_xfss_2024_06_005 crossref_primary_10_1111_jnc_16066 crossref_primary_10_1186_s13072_021_00387_7 crossref_primary_10_1111_jnc_14601 crossref_primary_10_1038_ncomms11252 crossref_primary_10_1016_j_cell_2015_07_038 crossref_primary_10_1073_pnas_2313596120 crossref_primary_10_1002_jcsm_12099 crossref_primary_10_1111_jne_12280 crossref_primary_10_1016_j_semcdb_2022_11_004 crossref_primary_10_1016_j_jid_2024_06_1274 crossref_primary_10_1186_s12915_016_0326_6 crossref_primary_10_1016_j_celrep_2014_10_001 crossref_primary_10_1016_j_tins_2018_07_005 crossref_primary_10_1038_nrn_2015_3 crossref_primary_10_1158_2326_6066_CIR_17_0187 crossref_primary_10_1002_syn_22276 crossref_primary_10_1186_s13072_015_0023_7 crossref_primary_10_3389_fimmu_2017_01146 crossref_primary_10_1038_s41467_021_22201_4 crossref_primary_10_1111_eva_13257 crossref_primary_10_1016_j_neuron_2016_01_020 crossref_primary_10_1038_s41559_018_0673_5 crossref_primary_10_1016_j_neuron_2014_09_011 crossref_primary_10_1002_path_4931 crossref_primary_10_1128_MCB_00760_14 crossref_primary_10_1083_jcb_201902117 crossref_primary_10_1242_dev_196964 crossref_primary_10_1038_s41598_022_06288_3 crossref_primary_10_1093_gigascience_giz152 crossref_primary_10_1126_science_aai8801 crossref_primary_10_1038_s41523_020_0167_x crossref_primary_10_4103_1673_5374_228724 crossref_primary_10_2217_epi_15_60 crossref_primary_10_3389_fnins_2018_00874 crossref_primary_10_1371_journal_pone_0200211 crossref_primary_10_1126_sciadv_abo7247 crossref_primary_10_1002_cne_24783 crossref_primary_10_1007_s00018_018_2951_4 crossref_primary_10_1016_j_mad_2024_111942 crossref_primary_10_1007_s00795_019_00229_2 crossref_primary_10_1159_000523817 crossref_primary_10_3389_fcell_2021_730014 crossref_primary_10_1016_j_devcel_2014_09_015 crossref_primary_10_1093_cercor_bhw407 crossref_primary_10_1016_j_tcb_2014_08_003 crossref_primary_10_1016_j_tig_2018_08_005 crossref_primary_10_1186_s13072_018_0182_4 crossref_primary_10_1186_s13148_019_0695_0 crossref_primary_10_1093_texcom_tgaa089 crossref_primary_10_7554_eLife_04123 crossref_primary_10_1016_j_celrep_2016_05_003 crossref_primary_10_1007_s00246_018_1861_4 crossref_primary_10_1126_science_aat4311 crossref_primary_10_1016_j_neuron_2014_02_005 crossref_primary_10_1242_jcs_228973 crossref_primary_10_1152_physiolgenomics_00042_2017 crossref_primary_10_1093_gbe_evz098 crossref_primary_10_1038_nn_4256 crossref_primary_10_1101_cshperspect_a024208 crossref_primary_10_3389_fmars_2017_00112 crossref_primary_10_1038_s41598_018_19173_9 crossref_primary_10_1038_ng_3906 crossref_primary_10_1002_pros_23728 crossref_primary_10_3389_fphys_2018_01905 crossref_primary_10_1073_pnas_2300489120 crossref_primary_10_1146_annurev_neuro_061010_113708 crossref_primary_10_7554_eLife_18529 crossref_primary_10_1093_nsr_nwaa002 crossref_primary_10_12688_f1000research_11491_1 crossref_primary_10_1016_j_alcohol_2016_11_009 crossref_primary_10_1016_j_neuron_2016_04_004 crossref_primary_10_1186_s13148_023_01519_4 crossref_primary_10_1038_s41467_024_47758_8 crossref_primary_10_1534_genetics_114_171785 crossref_primary_10_1007_s10147_019_01443_9 crossref_primary_10_1007_s11357_018_0040_0 crossref_primary_10_1096_fj_202300862R crossref_primary_10_1038_s41467_020_17009_7 crossref_primary_10_1016_j_bbrc_2013_12_138 crossref_primary_10_7554_eLife_07860 crossref_primary_10_1016_j_yexcr_2018_03_016 crossref_primary_10_3389_fnmol_2015_00084 crossref_primary_10_1016_j_neurobiolaging_2015_01_004 crossref_primary_10_1038_s44319_024_00261_z crossref_primary_10_1038_s41398_020_00984_2 crossref_primary_10_1128_spectrum_01055_22 crossref_primary_10_1038_s44161_024_00522_z crossref_primary_10_1146_annurev_cellbio_100616_060701 crossref_primary_10_1016_j_semcdb_2017_06_007 crossref_primary_10_1016_j_ydbio_2017_06_016 crossref_primary_10_4236_ajmb_2023_134015 crossref_primary_10_1042_BST20160103 crossref_primary_10_1016_j_cell_2015_09_026 crossref_primary_10_1016_j_cell_2014_07_012 crossref_primary_10_1371_journal_pone_0227212 crossref_primary_10_3389_fnmol_2021_671891 crossref_primary_10_1038_nature14668 crossref_primary_10_3109_01677063_2014_936437 crossref_primary_10_1242_jcs_166306 crossref_primary_10_1016_j_neuron_2015_12_026 crossref_primary_10_3389_fcell_2021_720798 crossref_primary_10_1016_j_cell_2017_05_006 crossref_primary_10_3390_cancers11010107 crossref_primary_10_12659_MSM_895603 crossref_primary_10_1093_nar_gkv727 crossref_primary_10_1038_s41467_022_29748_w crossref_primary_10_1080_19336918_2014_1000072 crossref_primary_10_1146_annurev_animal_021419_083609 crossref_primary_10_1534_genetics_119_302600 crossref_primary_10_1073_pnas_1713449114 crossref_primary_10_1016_j_reprotox_2016_08_011 crossref_primary_10_1007_s11357_014_9637_0 crossref_primary_10_1007_s12311_018_0984_8 crossref_primary_10_1038_s41467_021_25129_x crossref_primary_10_3389_fgene_2019_00184 crossref_primary_10_1016_j_cell_2017_03_025 crossref_primary_10_1016_j_ebiom_2017_12_031 crossref_primary_10_1038_srep06263 |
Cites_doi | 10.1038/emboj.2012.60 10.1128/MCB.01708-06 10.3389/fnmol.2012.00090 10.1242/dev.027912 10.1523/JNEUROSCI.2818-09.2009 10.1074/jbc.M408771200 10.1073/pnas.1205074109 10.1074/jbc.M602663200 10.1074/jbc.M111.245605 10.1523/JNEUROSCI.5478-08.2009 10.3389/fnmol.2011.00054 10.1523/JNEUROSCI.0969-12.2012 10.1101/gr.167301 10.1038/ng1500 10.1016/j.tcb.2012.03.004 10.1002/j.1460-2075.1993.tb05878.x 10.1242/jcs.108.12.3765 10.1186/1471-2148-7-49 10.1016/S0896-6273(00)80495-X 10.4161/cam.5.2.14374 10.1073/pnas.0407931101 10.1523/JNEUROSCI.03-12-02474.1983 10.1016/S0092-8674(00)80789-8 10.1016/S0896-6273(00)80796-5 10.1038/nrn2043 10.1074/jbc.M414359200 10.1073/pnas.0609445104 10.1101/gad.1004802 10.3389/fnmol.2012.00097 10.1111/j.1460-9568.2008.06052.x 10.3109/10409238.2012.694845 10.1534/genetics.104.037606 10.1074/jbc.M412909200 10.1093/nar/gkr1260 10.1242/dev.026807 10.1073/pnas.1219280110 10.1016/j.celrep.2012.06.014 10.1016/j.neuron.2012.01.028 10.1016/j.mcn.2008.12.002 10.1038/nature08431 10.1074/mcp.M900343-MCP200 10.1002/jnr.10618 10.1038/nature11305 10.1073/pnas.1114357108 10.1146/annurev.cellbio.24.110707.175250 10.1016/S0896-6273(02)01090-5 10.1038/nature06099 10.1016/S1097-2765(02)00578-6 10.1016/j.cell.2010.10.009 10.1074/jbc.M807417200 10.1016/j.neuron.2012.06.039 10.1074/jbc.M605677200 10.1093/jmcb/mjs034 10.1073/pnas.1013105107 10.1523/JNEUROSCI.23-12-05096.2003 10.1016/j.mcn.2005.05.001 10.1073/pnas.1004526107 10.1371/journal.pgen.1000650 10.1016/j.mcn.2008.01.016 10.1073/pnas.1007182107 10.1016/j.cell.2007.04.013 |
ContentType | Journal Article |
Copyright | 2013. Published by The Company of Biologists Ltd 2013 |
Copyright_xml | – notice: 2013. Published by The Company of Biologists Ltd 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 8FD F1W FR3 H95 L.G P64 RC3 5PM |
DOI | 10.1242/dev.090621 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
EndPage | 3302 |
ExternalDocumentID | PMC3737714 23900538 10_1242_dev_090621 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH108579 |
GroupedDBID | --- -DZ -ET -~X .55 0R~ 186 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAYXX ABZEH ACGFS ACMFV ACPRK ACREN ADBBV ADFRT ADVGF ADXHL AENEX AETEA AFFNX AGGIJ ALMA_UNASSIGNED_HOLDINGS AMTXH BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HZ~ INIJC KQ8 O9- OK1 P2P R.V RCB RHI SJN TR2 TWZ UPT W8F WH7 WOQ X7M XJT XSW .GJ 3O- 9M8 ABJNI ABTAH AGCDD AI. C1A CGR CUY CVF ECM EIF H~9 MVM NPM OHT RHF UQL VH1 VXZ XOL ZCG ZGI ZXP ZY4 7X8 8FD F1W FR3 H95 L.G P64 RC3 5PM |
ID | FETCH-LOGICAL-c477t-b2a59fd15bccfaf795cdc155aee5ae742070dcdaa90d1c8434311f4011470dba3 |
ISSN | 0950-1991 1477-9129 |
IngestDate | Thu Aug 21 18:07:13 EDT 2025 Tue Aug 05 09:53:51 EDT 2025 Fri Jul 11 01:21:01 EDT 2025 Wed Feb 19 02:42:31 EST 2025 Tue Jul 01 00:41:47 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Single cell diversity CTCF Cohesin Homophilic interaction Promoter choice Self-avoidance |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-b2a59fd15bccfaf795cdc155aee5ae742070dcdaa90d1c8434311f4011470dba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://doi.org/10.1242/dev.090621 |
PMID | 23900538 |
PQID | 1416695280 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3737714 proquest_miscellaneous_1551627252 proquest_miscellaneous_1416695280 pubmed_primary_23900538 crossref_primary_10_1242_dev_090621 crossref_citationtrail_10_1242_dev_090621 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-15 |
PublicationDateYYYYMMDD | 2013-08-15 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2013 |
Publisher | Company of Biologists |
Publisher_xml | – name: Company of Biologists |
References | Sano (2021042622092446700_R46) 1993; 12 Hasegawa (2021042622092446700_R17) 2012; 5 Zipursky (2021042622092446700_R61) 2010; 143 Kohmura (2021042622092446700_R30) 1998; 20 Haas (2021042622092446700_R13) 2005; 280 Garrett (2021042622092446700_R9) 2009; 29 Kawauchi (2021042622092446700_R27) 2009; 5 Hirayama (2021042622092446700_R22) 2012; 2 Remeseiro (2021042622092446700_R44) 2012; 31 Hattori (2021042622092446700_R19) 2008; 24 Guo (2021042622092446700_R12) 2012; 109 Weiner (2021042622092446700_R55) 2005; 102 Rajagopal (2021042622092446700_R42) 2012; 47 Brasch (2021042622092446700_R2) 2012; 22 Murata (2021042622092446700_R37) 2004; 279 Katori (2021042622092446700_R26) 2009; 29 Frank (2021042622092446700_R8) 2005; 29 Obata (2021042622092446700_R38) 1995; 108 Garrett (2021042622092446700_R10) 2012; 74 Hattori (2021042622092446700_R18) 2007; 449 Kim (2021042622092446700_R29) 2011; 5 Phillips (2021042622092446700_R39) 2003; 23 Yu (2021042622092446700_R60) 2007; 7 Li (2021042622092446700_R34) 2012; 32 Fernández-Monreal (2021042622092446700_R7) 2009; 40 Golan-Mashiach (2021042622092446700_R11) 2012; 40 Hambsch (2021042622092446700_R14) 2005; 280 Yokota (2021042622092446700_R59) 2011; 286 Suo (2021042622092446700_R50) 2012; 4 Han (2021042622092446700_R15) 2010; 9 Wang (2021042622092446700_R54) 2002; 36 Chen (2021042622092446700_R4) 2009; 284 Lefebvre (2021042622092446700_R33) 2012; 488 Schalm (2021042622092446700_R47) 2010; 107 Prasad (2021042622092446700_R40) 2011; 4 Hattori (2021042622092446700_R20) 2009; 461 Kallenbach (2021042622092446700_R24) 2003; 72 Bonn (2021042622092446700_R1) 2007; 27 Wu (2021042622092446700_R57) 1999; 97 Prasad (2021042622092446700_R41) 2008; 135 Schreiner (2021042622092446700_R48) 2010; 107 Chen (2021042622092446700_R5) 2012; 75 Takeichi (2021042622092446700_R51) 2007; 8 Junghans (2021042622092446700_R23) 2008; 27 Hirano (2021042622092446700_R21) 2012; 5 Wu (2021042622092446700_R56) 2005; 169 Matthews (2021042622092446700_R35) 2007; 129 Wang (2021042622092446700_R53) 2002; 16 Kehayova (2021042622092446700_R28) 2011; 108 Hasegawa (2021042622092446700_R16) 2008; 38 Reiss (2021042622092446700_R43) 2006; 281 Kaneko (2021042622092446700_R25) 2006; 281 Shapiro (2021042622092446700_R49) 1999; 23 Wu (2021042622092446700_R58) 2001; 11 Ribich (2021042622092446700_R45) 2006; 103 Lefebvre (2021042622092446700_R32) 2008; 135 Monahan (2021042622092446700_R36) 2012; 109 Buchanan (2021042622092446700_R3) 2010; 107 Esumi (2021042622092446700_R6) 2005; 37 Kramer (2021042622092446700_R31) 1983; 3 Tasic (2021042622092446700_R52) 2002; 10 15574493 - Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):8-14 22854024 - Cell Rep. 2012 Aug 30;2(2):345-57 22915120 - J Neurosci. 2012 Aug 22;32(34):11780-97 20616001 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13894-9 18279309 - Eur J Neurosci. 2008 Feb;27(3):559-71 23204437 - Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21081-6 21173574 - Cell Adh Migr. 2011 Mar-Apr;5(2):97-105 22415368 - EMBO J. 2012 May 2;31(9):2090-102 19763162 - PLoS Genet. 2009 Sep;5(9):e1000650 21771796 - J Biol Chem. 2011 Sep 9;286(36):31885-95 6317810 - J Neurosci. 1983 Dec;3(12):2474-86 22884324 - Neuron. 2012 Aug 9;75(3):402-9 20876099 - Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17774-9 17482551 - Cell. 2007 May 4;129(3):593-604 15347688 - J Biol Chem. 2004 Nov 19;279(47):49508-16 15640798 - Nat Genet. 2005 Feb;37(2):171-6 15744052 - Genetics. 2005 Apr;169(4):2179-88 19625505 - J Neurosci. 2009 Jul 22;29(29):9137-47 15964765 - Mol Cell Neurosci. 2005 Aug;29(4):603-16 10380929 - Cell. 1999 Jun 11;97(6):779-90 21949399 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17195-200 19794492 - Nature. 2009 Oct 1;461(7264):644-8 22550178 - Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9125-30 19843561 - Mol Cell Proteomics. 2010 Jan;9(1):71-83 12150904 - Mol Cell. 2002 Jul;10(1):21-33 22969705 - Front Mol Neurosci. 2012 Aug 31;5:90 18353676 - Mol Cell Neurosci. 2008 May;38(1):66-79 15711011 - J Biol Chem. 2005 Apr 22;280(16):15888-97 9655502 - Neuron. 1998 Jun;20(6):1137-51 23087612 - Front Mol Neurosci. 2012 Oct 16;5:97 11230163 - Genome Res. 2001 Mar;11(3):389-404 16893882 - J Biol Chem. 2006 Oct 13;281(41):30551-60 12832533 - J Neurosci. 2003 Jun 15;23(12):5096-104 17133224 - Nat Rev Neurosci. 2007 Jan;8(1):11-20 12467588 - Neuron. 2002 Dec 5;36(5):843-54 18837673 - Annu Rev Cell Dev Biol. 2008;24:597-620 22275881 - Front Mol Neurosci. 2011 Dec 23;4:54 17851526 - Nature. 2007 Sep 13;449(7159):223-7 19136062 - Mol Cell Neurosci. 2009 Mar;40(3):344-53 12749019 - J Neurosci Res. 2003 Jun 1;72(5):549-56 22842903 - Nature. 2012 Aug 23;488(7412):517-21 19029045 - Development. 2008 Dec;135(24):4153-64 17172445 - Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19719-24 22730554 - J Mol Cell Biol. 2012 Dec;4(6):362-76 20679223 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14893-8 19029044 - Development. 2008 Dec;135(24):4141-51 19776259 - J Neurosci. 2009 Sep 23;29(38):11723-31 17403907 - Mol Cell Biol. 2007 Jun;27(11):4121-32 15611067 - J Biol Chem. 2005 Mar 11;280(10):9313-9 22555008 - Trends Cell Biol. 2012 Jun;22(6):299-310 10433255 - Neuron. 1999 Jul;23(3):427-30 22542181 - Neuron. 2012 Apr 26;74(2):269-76 16751190 - J Biol Chem. 2006 Aug 4;281(31):21735-44 8508762 - EMBO J. 1993 Jun;12(6):2249-56 21029858 - Cell. 2010 Oct 29;143(3):343-53 17394664 - BMC Evol Biol. 2007;7:49 22681236 - Crit Rev Biochem Mol Biol. 2012 Jul-Aug;47(4):391-406 19047047 - J Biol Chem. 2009 Jan 30;284(5):2880-90 12154121 - Genes Dev. 2002 Aug 1;16(15):1890-905 22210889 - Nucleic Acids Res. 2012 Apr;40(8):3378-91 8719883 - J Cell Sci. 1995 Dec;108 ( Pt 12):3765-73 |
References_xml | – volume: 31 start-page: 2090 year: 2012 ident: 2021042622092446700_R44 article-title: A unique role of cohesin-SA1 in gene regulation and development publication-title: EMBO J. doi: 10.1038/emboj.2012.60 – volume: 27 start-page: 4121 year: 2007 ident: 2021042622092446700_R1 article-title: Combinatorial expression of alpha- and gamma-protocadherins alters their presenilin-dependent processing publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01708-06 – volume: 5 start-page: 90 year: 2012 ident: 2021042622092446700_R21 article-title: Single-neuron diversity generated by Protocadherin-beta cluster in mouse central and peripheral nervous systems publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2012.00090 – volume: 135 start-page: 4141 year: 2008 ident: 2021042622092446700_R32 article-title: gamma-Protocadherins regulate neuronal survival but are dispensable for circuit formation in retina publication-title: Development doi: 10.1242/dev.027912 – volume: 29 start-page: 11723 year: 2009 ident: 2021042622092446700_R9 article-title: Control of CNS synapse development by {gamma}-protocadherin-mediated astrocyte-neuron contact publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2818-09.2009 – volume: 279 start-page: 49508 year: 2004 ident: 2021042622092446700_R37 article-title: Interaction with protocadherin-gamma regulates the cell surface expression of protocadherin-alpha publication-title: J. Biol. Chem. doi: 10.1074/jbc.M408771200 – volume: 109 start-page: 9125 year: 2012 ident: 2021042622092446700_R36 article-title: Role of CCCTC binding factor (CTCF) and cohesin in the generation of single-cell diversity of protocadherin-α gene expression publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1205074109 – volume: 281 start-page: 21735 year: 2006 ident: 2021042622092446700_R43 article-title: Regulated ADAM10-dependent ectodomain shedding of gamma-protocadherin C3 modulates cell-cell adhesion publication-title: J. Biol. Chem. doi: 10.1074/jbc.M602663200 – volume: 286 start-page: 31885 year: 2011 ident: 2021042622092446700_R59 article-title: Identification of the cluster control region for the protocadherin-beta genes located beyond the protocadherin-gamma cluster publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.245605 – volume: 29 start-page: 9137 year: 2009 ident: 2021042622092446700_R26 article-title: Protocadherin-alpha family is required for serotonergic projections to appropriately innervate target brain areas publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5478-08.2009 – volume: 4 start-page: 54 year: 2011 ident: 2021042622092446700_R40 article-title: Direct and indirect regulation of spinal cord Ia afferent terminal formation by the gamma-protocadherins publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2011.00054 – volume: 32 start-page: 11780 year: 2012 ident: 2021042622092446700_R34 article-title: Molecular and functional interaction between protocadherin-gammaC5 and GABAA receptors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0969-12.2012 – volume: 11 start-page: 389 year: 2001 ident: 2021042622092446700_R58 article-title: Comparative DNA sequence analysis of mouse and human protocadherin gene clusters publication-title: Genome Res. doi: 10.1101/gr.167301 – volume: 37 start-page: 171 year: 2005 ident: 2021042622092446700_R6 article-title: Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons publication-title: Nat. Genet. doi: 10.1038/ng1500 – volume: 22 start-page: 299 year: 2012 ident: 2021042622092446700_R2 article-title: Thinking outside the cell: how cadherins drive adhesion publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2012.03.004 – volume: 12 start-page: 2249 year: 1993 ident: 2021042622092446700_R46 article-title: Protocadherins: a large family of cadherin-related molecules in central nervous system publication-title: EMBO J. doi: 10.1002/j.1460-2075.1993.tb05878.x – volume: 108 start-page: 3765 year: 1995 ident: 2021042622092446700_R38 article-title: Protocadherin Pcdh2 shows properties similar to, but distinct from, those of classical cadherins publication-title: J. Cell Sci. doi: 10.1242/jcs.108.12.3765 – volume: 7 start-page: 49 year: 2007 ident: 2021042622092446700_R60 article-title: Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-7-49 – volume: 20 start-page: 1137 year: 1998 ident: 2021042622092446700_R30 article-title: Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex publication-title: Neuron doi: 10.1016/S0896-6273(00)80495-X – volume: 5 start-page: 97 year: 2011 ident: 2021042622092446700_R29 article-title: Non-clustered protocadherin publication-title: Cell Adh. Migr. doi: 10.4161/cam.5.2.14374 – volume: 102 start-page: 8 year: 2005 ident: 2021042622092446700_R55 article-title: Gamma protocadherins are required for synaptic development in the spinal cord publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0407931101 – volume: 3 start-page: 2474 year: 1983 ident: 2021042622092446700_R31 article-title: Formation of the receptive fields of leech mechanosensory neurons during embryonic development publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.03-12-02474.1983 – volume: 97 start-page: 779 year: 1999 ident: 2021042622092446700_R57 article-title: A striking organization of a large family of human neural cadherin-like cell adhesion genes publication-title: Cell doi: 10.1016/S0092-8674(00)80789-8 – volume: 23 start-page: 427 year: 1999 ident: 2021042622092446700_R49 article-title: The diversity of cadherins and implications for a synaptic adhesive code in the CNS publication-title: Neuron doi: 10.1016/S0896-6273(00)80796-5 – volume: 8 start-page: 11 year: 2007 ident: 2021042622092446700_R51 article-title: The cadherin superfamily in neuronal connections and interactions publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2043 – volume: 280 start-page: 15888 year: 2005 ident: 2021042622092446700_R14 article-title: gamma-Protocadherins, presenilin-mediated release of C-terminal fragment promotes locus expression publication-title: J. Biol. Chem. doi: 10.1074/jbc.M414359200 – volume: 103 start-page: 19719 year: 2006 ident: 2021042622092446700_R45 article-title: Identification of long-range regulatory elements in the protocadherin-alpha gene cluster publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0609445104 – volume: 16 start-page: 1890 year: 2002 ident: 2021042622092446700_R53 article-title: Molecular mechanisms governing Pcdh-gamma gene expression: evidence for a multiple promoter and cis-alternative splicing model publication-title: Genes Dev. doi: 10.1101/gad.1004802 – volume: 5 start-page: 97 year: 2012 ident: 2021042622092446700_R17 article-title: Constitutively expressed Protocadherin-alpha regulates the coalescence and elimination of homotypic olfactory axons through its cytoplasmic region publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2012.00097 – volume: 27 start-page: 559 year: 2008 ident: 2021042622092446700_R23 article-title: Postsynaptic and differential localization to neuronal subtypes of protocadherin beta16 in the mammalian central nervous system publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2008.06052.x – volume: 47 start-page: 391 year: 2012 ident: 2021042622092446700_R42 article-title: Signaling from the secretory granule to the nucleus publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.3109/10409238.2012.694845 – volume: 169 start-page: 2179 year: 2005 ident: 2021042622092446700_R56 article-title: Comparative genomics and diversifying selection of the clustered vertebrate protocadherin genes publication-title: Genetics doi: 10.1534/genetics.104.037606 – volume: 280 start-page: 9313 year: 2005 ident: 2021042622092446700_R13 article-title: Presenilin-dependent processing and nuclear function of gamma-protocadherins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M412909200 – volume: 40 start-page: 3378 year: 2012 ident: 2021042622092446700_R11 article-title: Identification of CTCF as a master regulator of the clustered protocadherin genes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1260 – volume: 135 start-page: 4153 year: 2008 ident: 2021042622092446700_R41 article-title: A differential developmental pattern of spinal interneuron apoptosis during synaptogenesis: insights from genetic analyses of the protocadherin-gamma gene cluster publication-title: Development doi: 10.1242/dev.026807 – volume: 109 start-page: 21081 year: 2012 ident: 2021042622092446700_R12 article-title: CTCF/cohesin-mediated DNA looping is required for protocadherin α promoter choice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1219280110 – volume: 2 start-page: 345 year: 2012 ident: 2021042622092446700_R22 article-title: CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons publication-title: Cell Reports doi: 10.1016/j.celrep.2012.06.014 – volume: 74 start-page: 269 year: 2012 ident: 2021042622092446700_R10 article-title: γ-protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway publication-title: Neuron doi: 10.1016/j.neuron.2012.01.028 – volume: 40 start-page: 344 year: 2009 ident: 2021042622092446700_R7 article-title: Gamma-protocadherin homophilic interaction and intracellular trafficking is controlled by the cytoplasmic domain in neurons publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2008.12.002 – volume: 461 start-page: 644 year: 2009 ident: 2021042622092446700_R20 article-title: Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms publication-title: Nature doi: 10.1038/nature08431 – volume: 9 start-page: 71 year: 2010 ident: 2021042622092446700_R15 article-title: Proteomics analysis reveals overlapping functions of clustered protocadherins publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.M900343-MCP200 – volume: 72 start-page: 549 year: 2003 ident: 2021042622092446700_R24 article-title: Changes in subcellular distribution of protocadherin gamma proteins accompany maturation of spinal neurons publication-title: J. Neurosci. Res. doi: 10.1002/jnr.10618 – volume: 488 start-page: 517 year: 2012 ident: 2021042622092446700_R33 article-title: Protocadherins mediate dendritic self-avoidance in the mammalian nervous system publication-title: Nature doi: 10.1038/nature11305 – volume: 108 start-page: 17195 year: 2011 ident: 2021042622092446700_R28 article-title: Regulatory elements required for the activation and repression of the protocadherin-alpha gene cluster publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1114357108 – volume: 24 start-page: 597 year: 2008 ident: 2021042622092446700_R19 article-title: Dscam-mediated cell recognition regulates neural circuit formation publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.24.110707.175250 – volume: 36 start-page: 843 year: 2002 ident: 2021042622092446700_R54 article-title: Gamma protocadherins are required for survival of spinal interneurons publication-title: Neuron doi: 10.1016/S0896-6273(02)01090-5 – volume: 449 start-page: 223 year: 2007 ident: 2021042622092446700_R18 article-title: Dscam diversity is essential for neuronal wiring and self-recognition publication-title: Nature doi: 10.1038/nature06099 – volume: 10 start-page: 21 year: 2002 ident: 2021042622092446700_R52 article-title: Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00578-6 – volume: 143 start-page: 343 year: 2010 ident: 2021042622092446700_R61 article-title: Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly publication-title: Cell doi: 10.1016/j.cell.2010.10.009 – volume: 284 start-page: 2880 year: 2009 ident: 2021042622092446700_R4 article-title: alpha- and gamma-Protocadherins negatively regulate PYK2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M807417200 – volume: 75 start-page: 402 year: 2012 ident: 2021042622092446700_R5 article-title: Functional significance of isoform diversification in the protocadherin gamma gene cluster publication-title: Neuron doi: 10.1016/j.neuron.2012.06.039 – volume: 281 start-page: 30551 year: 2006 ident: 2021042622092446700_R25 article-title: Allelic gene regulation of Pcdh-alpha and Pcdh-gamma clusters involving both monoallelic and biallelic expression in single Purkinje cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M605677200 – volume: 4 start-page: 362 year: 2012 ident: 2021042622092446700_R50 article-title: Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase publication-title: J. Mol. Cell Biol. doi: 10.1093/jmcb/mjs034 – volume: 107 start-page: 17774 year: 2010 ident: 2021042622092446700_R3 article-title: Proteolytic processing of protocadherin proteins requires endocytosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1013105107 – volume: 23 start-page: 5096 year: 2003 ident: 2021042622092446700_R39 article-title: Gamma-protocadherins are targeted to subsets of synapses and intracellular organelles in neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-12-05096.2003 – volume: 29 start-page: 603 year: 2005 ident: 2021042622092446700_R8 article-title: Differential expression of individual gamma-protocadherins during mouse brain development publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2005.05.001 – volume: 107 start-page: 14893 year: 2010 ident: 2021042622092446700_R48 article-title: Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1004526107 – volume: 5 start-page: e1000650 year: 2009 ident: 2021042622092446700_R27 article-title: Multiple organ system defects and transcriptional dysregulation in the Nipbl(+/-) mouse, a model of Cornelia de Lange Syndrome publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000650 – volume: 38 start-page: 66 year: 2008 ident: 2021042622092446700_R16 article-title: The protocadherin-alpha family is involved in axonal coalescence of olfactory sensory neurons into glomeruli of the olfactory bulb in mouse publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2008.01.016 – volume: 107 start-page: 13894 year: 2010 ident: 2021042622092446700_R47 article-title: Phosphorylation of protocadherin proteins by the receptor tyrosine kinase Ret publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1007182107 – volume: 129 start-page: 593 year: 2007 ident: 2021042622092446700_R35 article-title: Dendrite self-avoidance is controlled by Dscam publication-title: Cell doi: 10.1016/j.cell.2007.04.013 – reference: 22550178 - Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9125-30 – reference: 10433255 - Neuron. 1999 Jul;23(3):427-30 – reference: 19625505 - J Neurosci. 2009 Jul 22;29(29):9137-47 – reference: 11230163 - Genome Res. 2001 Mar;11(3):389-404 – reference: 20876099 - Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17774-9 – reference: 19029045 - Development. 2008 Dec;135(24):4153-64 – reference: 19047047 - J Biol Chem. 2009 Jan 30;284(5):2880-90 – reference: 9655502 - Neuron. 1998 Jun;20(6):1137-51 – reference: 18279309 - Eur J Neurosci. 2008 Feb;27(3):559-71 – reference: 22542181 - Neuron. 2012 Apr 26;74(2):269-76 – reference: 22915120 - J Neurosci. 2012 Aug 22;32(34):11780-97 – reference: 21029858 - Cell. 2010 Oct 29;143(3):343-53 – reference: 20616001 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13894-9 – reference: 22210889 - Nucleic Acids Res. 2012 Apr;40(8):3378-91 – reference: 12749019 - J Neurosci Res. 2003 Jun 1;72(5):549-56 – reference: 17482551 - Cell. 2007 May 4;129(3):593-604 – reference: 15640798 - Nat Genet. 2005 Feb;37(2):171-6 – reference: 8719883 - J Cell Sci. 1995 Dec;108 ( Pt 12):3765-73 – reference: 22842903 - Nature. 2012 Aug 23;488(7412):517-21 – reference: 6317810 - J Neurosci. 1983 Dec;3(12):2474-86 – reference: 23087612 - Front Mol Neurosci. 2012 Oct 16;5:97 – reference: 20679223 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14893-8 – reference: 22730554 - J Mol Cell Biol. 2012 Dec;4(6):362-76 – reference: 22555008 - Trends Cell Biol. 2012 Jun;22(6):299-310 – reference: 17133224 - Nat Rev Neurosci. 2007 Jan;8(1):11-20 – reference: 15611067 - J Biol Chem. 2005 Mar 11;280(10):9313-9 – reference: 23204437 - Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21081-6 – reference: 22681236 - Crit Rev Biochem Mol Biol. 2012 Jul-Aug;47(4):391-406 – reference: 15347688 - J Biol Chem. 2004 Nov 19;279(47):49508-16 – reference: 17403907 - Mol Cell Biol. 2007 Jun;27(11):4121-32 – reference: 15574493 - Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):8-14 – reference: 16893882 - J Biol Chem. 2006 Oct 13;281(41):30551-60 – reference: 15711011 - J Biol Chem. 2005 Apr 22;280(16):15888-97 – reference: 19843561 - Mol Cell Proteomics. 2010 Jan;9(1):71-83 – reference: 22275881 - Front Mol Neurosci. 2011 Dec 23;4:54 – reference: 22969705 - Front Mol Neurosci. 2012 Aug 31;5:90 – reference: 19029044 - Development. 2008 Dec;135(24):4141-51 – reference: 22854024 - Cell Rep. 2012 Aug 30;2(2):345-57 – reference: 18837673 - Annu Rev Cell Dev Biol. 2008;24:597-620 – reference: 19776259 - J Neurosci. 2009 Sep 23;29(38):11723-31 – reference: 15964765 - Mol Cell Neurosci. 2005 Aug;29(4):603-16 – reference: 16751190 - J Biol Chem. 2006 Aug 4;281(31):21735-44 – reference: 22884324 - Neuron. 2012 Aug 9;75(3):402-9 – reference: 21173574 - Cell Adh Migr. 2011 Mar-Apr;5(2):97-105 – reference: 22415368 - EMBO J. 2012 May 2;31(9):2090-102 – reference: 17394664 - BMC Evol Biol. 2007;7:49 – reference: 12832533 - J Neurosci. 2003 Jun 15;23(12):5096-104 – reference: 21771796 - J Biol Chem. 2011 Sep 9;286(36):31885-95 – reference: 19763162 - PLoS Genet. 2009 Sep;5(9):e1000650 – reference: 19794492 - Nature. 2009 Oct 1;461(7264):644-8 – reference: 19136062 - Mol Cell Neurosci. 2009 Mar;40(3):344-53 – reference: 12154121 - Genes Dev. 2002 Aug 1;16(15):1890-905 – reference: 12150904 - Mol Cell. 2002 Jul;10(1):21-33 – reference: 8508762 - EMBO J. 1993 Jun;12(6):2249-56 – reference: 18353676 - Mol Cell Neurosci. 2008 May;38(1):66-79 – reference: 15744052 - Genetics. 2005 Apr;169(4):2179-88 – reference: 17851526 - Nature. 2007 Sep 13;449(7159):223-7 – reference: 12467588 - Neuron. 2002 Dec 5;36(5):843-54 – reference: 21949399 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17195-200 – reference: 10380929 - Cell. 1999 Jun 11;97(6):779-90 – reference: 17172445 - Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19719-24 |
SSID | ssj0003677 |
Score | 2.4754984 |
SecondaryResourceType | review_article |
Snippet | The majority of vertebrate protocadherin (Pcdh) genes are clustered in a single genomic locus, and this remarkable genomic organization is highly conserved... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3297 |
SubjectTerms | Animals Binding Sites Cadherins - genetics Cadherins - metabolism CCCTC-Binding Factor Development at A Glance Exons Humans Mice Multigene Family Neural Pathways - metabolism Promoter Regions, Genetic Protein Interaction Mapping Protein Isoforms - genetics Protein Isoforms - metabolism Purkinje Cells - cytology Purkinje Cells - metabolism Repressor Proteins - genetics Repressor Proteins - metabolism Synapses - metabolism Teleostei Transcription, Genetic |
Title | Clustered protocadherins |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23900538 https://www.proquest.com/docview/1416695280 https://www.proquest.com/docview/1551627252 https://pubmed.ncbi.nlm.nih.gov/PMC3737714 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEYhLBeXRpYAWwYVDSmwncXKsVq0KdMtlV6y4RLbjFKQqi2gWCX59Z-w8aYUKh41WjuUk8yXjGXu-GYA3JmVMlZxR3lYeROhjBNrKIhCGar0Ii63Ed56fJsfL6MMqXvV5iB27pNb75ve1vJL_QRXbEFdiyf4Dst2g2ID_EV88IsJ4vBHGs_MN5TmwRPVf1zgrFY7NdzG0OAdRQW7HtuVoDZYAZg1D47OlAPnqrA98nauKoPOhRP4B2iUCKteQBp4k2a31hRRRwkZqz6dJavEdajHBfcxsMyMK4UjRV7UtTu8oosL-3A8p3THr55R2H_30U360PDnJF4erxW24w9GWd37v-4_ddCkSVx6zu8cmhyyO_a4feWw1XHEF_oxoHZgIiwew3dj20wMP1EO4ZasduOurff7agXvzJo4BG7-sXeMj2O0wnI4xfAzLo8PF7DhoqlUEJpKyDjRXcVYWLNbGlKqUWWwKg9aashZ_MuKoXAtTKJWFBTMpMXoZKyNySPGEVuIJbFXryu7CNEOzT8eliBKdoZEhU2sTpcIEPyqtRSIm8LaVRm6aVO5UUeQ8J5cOJZej5HIvuQm87vp-9wlMru31qhVqjvqFNo1UZdebC3QNWZJkMU_Dv_Sh3VYuecwn8NQD0V2Li4wUfToBOYKo60D5zcdnqm9fXZ5zIYWULHp2g-vuwf3-xX8OW_WPjX2B1mKtX7q37RL_32n9 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustered+protocadherins&rft.jtitle=Development+%28Cambridge%29&rft.au=Chen%2C+Weisheng+V&rft.au=Maniatis%2C+Tom&rft.date=2013-08-15&rft.issn=0950-1991&rft.volume=140&rft.issue=16&rft.spage=3297&rft.epage=3302&rft_id=info:doi/10.1242%2Fdev.090621&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |