Escape of X-linked miRNA genes from meiotic sex chromosome inactivation
Past studies indicated that transcription of all X-linked genes is repressed by Meiotic Sex Chromosome Inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However more recent studies showed an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocyt...
Saved in:
Published in | Development (Cambridge) Vol. 142; no. 21; pp. 3791 - 3800 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Past studies indicated that transcription of all X-linked genes is repressed by Meiotic Sex Chromosome Inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However more recent studies showed an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA pol II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis. |
---|---|
AbstractList | Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis.
Summary:
During mouse spermatogenesis, some miRNA genes escape pan-chromosomal silencing of the X, in a process involving their physical relocation away from the XY body heterochromatin domain. Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis. Past studies indicated that transcription of all X-linked genes is repressed by Meiotic Sex Chromosome Inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However more recent studies showed an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA pol II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis. Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis. Summary: During mouse spermatogenesis, some miRNA genes escape pan-chromosomal silencing of the X, in a process involving their physical relocation away from the XY body heterochromatin domain. Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis.Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis. |
Author | Flores, Luis McCarrey, John R. Sosa, Enrique Yan, Wei |
AuthorAffiliation | 1 Department of Biology , University of Texas at San Antonio , San Antonio, TX 78249 , USA 2 Department of Physiology & Cell Biology , University of Nevada School of Medicine , Reno, NV 89557 , USA |
AuthorAffiliation_xml | – name: 1 Department of Biology , University of Texas at San Antonio , San Antonio, TX 78249 , USA – name: 2 Department of Physiology & Cell Biology , University of Nevada School of Medicine , Reno, NV 89557 , USA |
Author_xml | – sequence: 1 givenname: Enrique surname: Sosa fullname: Sosa, Enrique organization: Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA – sequence: 2 givenname: Luis surname: Flores fullname: Flores, Luis organization: Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA – sequence: 3 givenname: Wei surname: Yan fullname: Yan, Wei organization: Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA – sequence: 4 givenname: John R. surname: McCarrey fullname: McCarrey, John R. organization: Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26395485$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9rFTEQxYO02Nvqix9A8iiFbZPNv82LUEqtQqkgCr6F7GS2je4m183ei357o7ctVgSfZpj5zeEw55DspZyQkBecnfBWtqcBt7Ux3PInZMWlMY3lrd0jK2YVa7i1_IAclvKFMSa0MU_JQauFVbJTK3J5UcCvkeaBfm7GmL5ioFP8cH1GbzBhocOcJzphzEsEWvA7hds6ySVPSGPysMStX2JOz8j-4MeCz-_qEfn05uLj-dvm6v3lu_Ozqwaqr6Ux_SBCEEMLXcdY7zuve2ECDwoU02Bl0D33HWgwwXIwMPSoIKjBW6aMVuKIvN7prjf9hAEwLbMf3XqOk59_uOyje7xJ8dbd5K2TWpqWyyrw6k5gzt82WBY3xQI4jj5h3hTHO9ZpJWUr_o8awXTHrGAVffmnrQc_94-uANsBMOdSZhwcxOX356rLODrO3K8sXc3S7bKsJ8d_ndyr_gP-CXP1oEw |
CitedBy_id | crossref_primary_10_1371_journal_pone_0211739 crossref_primary_10_15252_embr_201949024 crossref_primary_10_15252_embr_201949354 crossref_primary_10_3389_fcell_2021_626020 crossref_primary_10_1111_and_13602 crossref_primary_10_1093_biolre_iox084 crossref_primary_10_1093_biolre_iox150 crossref_primary_10_1101_gr_225391_117 crossref_primary_10_1016_j_cub_2017_04_017 crossref_primary_10_1002_ajmg_c_31672 crossref_primary_10_1242_dev_136721 crossref_primary_10_1093_molbev_msz001 |
Cites_doi | 10.1242/dev.000018 10.1101/gad.219477.113 10.1371/journal.pbio.0050192 10.1242/jcs.00111 10.1073/pnas.69.1.182 10.1007/s00439-011-1011-z 10.1074/jbc.271.24.14390 10.1371/journal.pgen.1005079 10.1007/s00412-012-0364-y 10.1016/j.devcel.2012.07.003 10.1007/BF02982193 10.1016/j.cub.2006.01.066 10.1073/pnas.0406325101 10.1101/gad.380906 10.1038/ng.126 10.1007/978-1-60761-103-5_25 10.1002/gene.10163 10.1101/gad.2030811 10.1007/BF00274192 10.1016/S1534-5807(03)00093-5 10.1038/337373a0 10.1038/ng1423 10.1371/journal.pone.0015317 10.1016/j.sbi.2005.05.006 10.1159/000132070 10.1007/s10577-007-1190-6 10.1016/j.cell.2014.09.030 10.1080/10409230500356703 10.1038/ng0398-212 10.1186/1471-2164-6-29 10.1016/j.cell.2013.05.028 10.1101/gad.10.19.2423 10.1093/hmg/ddi322 10.1038/srep08084 10.1016/j.cell.2014.09.052 10.7150/jgen.8178 10.1038/nature03479 10.1016/j.cub.2010.11.010 10.1007/BF00285153 10.1016/j.cub.2004.11.032 10.1038/ng1484 10.1242/dev.129.2.479 10.4161/epi.4.7.9923 10.1038/ng.338 10.1142/9789812810557_0007 10.1016/j.devcel.2006.02.009 10.1073/pnas.0601069103 10.1038/86927 10.1016/0012-1606(92)90056-M 10.1038/nature06634 10.1098/rstb.1995.0166 10.1007/BF00356023 10.1016/j.exer.2008.10.011 10.1038/nprot.2010.195 |
ContentType | Journal Article |
Copyright | 2015. Published by The Company of Biologists Ltd. 2015. Published by The Company of Biologists Ltd 2015 |
Copyright_xml | – notice: 2015. Published by The Company of Biologists Ltd. – notice: 2015. Published by The Company of Biologists Ltd 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
DOI | 10.1242/dev.127191 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE CrossRef Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
EndPage | 3800 |
ExternalDocumentID | PMC4647214 26395485 10_1242_dev_127191 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R25 GM060655 – fundername: NICHD NIH HHS grantid: HD60858 – fundername: NIMHD NIH HHS grantid: G12MD007591 – fundername: NIMHD NIH HHS grantid: G12 MD007591 – fundername: NICHD NIH HHS grantid: R03 HD074573 – fundername: NICHD NIH HHS grantid: R01 HD060858 – fundername: NICHD NIH HHS grantid: R21 HD071736 – fundername: NIGMS NIH HHS grantid: R25GM060655 |
GroupedDBID | --- -DZ -ET -~X .55 0R~ 186 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAYXX ABZEH ACGFS ACMFV ACPRK ACREN ADBBV ADFRT ADVGF AENEX AETEA AFFNX AGGIJ ALMA_UNASSIGNED_HOLDINGS AMTXH BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HZ~ INIJC KQ8 O9- OK1 P2P R.V RCB RHI SJN TR2 TWZ UPT W8F WH7 WOQ X7M XJT XSW CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c477t-7bf3dd3f2c8800ba8a6b37d1d5c506c94d6b1a8c6c7d91c7cfbe5cd5fa9057653 |
ISSN | 0950-1991 1477-9129 |
IngestDate | Thu Aug 21 14:02:55 EDT 2025 Mon Jul 21 11:25:51 EDT 2025 Thu Jul 10 18:31:42 EDT 2025 Thu Apr 03 07:06:02 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Tue Jul 01 00:41:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | X inactivation Meiosis Germ cells Epigenetic regulation Male fertility Spermatogenesis |
Language | English |
License | 2015. Published by The Company of Biologists Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-7bf3dd3f2c8800ba8a6b37d1d5c506c94d6b1a8c6c7d91c7cfbe5cd5fa9057653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4647214 |
PMID | 26395485 |
PQID | 1730680930 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4647214 proquest_miscellaneous_1808654423 proquest_miscellaneous_1730680930 pubmed_primary_26395485 crossref_citationtrail_10_1242_dev_127191 crossref_primary_10_1242_dev_127191 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2015 |
Publisher | The Company of Biologists |
Publisher_xml | – name: The Company of Biologists |
References | Clemson (2021042608134099300_DEV127191C9) 2006; 103 Divina (2021042608134099300_DEV127191C10) 2005; 6 Wang (2021042608134099300_DEV127191C53) 2005; 14 Turner (2021042608134099300_DEV127191C49) 2006; 10 Braun (2021042608134099300_DEV127191C3) 1989; 337 Keegan (2021042608134099300_DEV127191C17) 1996; 10 Song (2021042608134099300_DEV127191C43) 2009; 41 Berletch (2021042608134099300_DEV127191C2) 2015; 11 Sun (2021042608134099300_DEV127191C44) 2013; 153 Graves (2021042608134099300_DEV127191C14) 1995; 350 Buchold (2021042608134099300_DEV127191C4) 2010; 5 Turner (2021042608134099300_DEV127191C46) 2002; 115 Koller (2021042608134099300_DEV127191C21) 1934; 29 Turner (2021042608134099300_DEV127191C48) 2005; 37 Khalil (2021042608134099300_DEV127191C19) 2004; 101 Mahadevaiah (2021042608134099300_DEV127191C26) 2009; 558 Royo (2021042608134099300_DEV127191C41) 2013; 27 Soh (2021042608134099300_DEV127191C42) 2014; 159 Namekawa (2021042608134099300_DEV127191C35) 2006; 16 McKee (2021042608134099300_DEV127191C31) 1993; 102 Page (2021042608134099300_DEV127191C38) 2012; 121 Osborne (2021042608134099300_DEV127191C37) 2007; 5 Chandley (2021042608134099300_DEV127191C7) 1984; 38 Liu (2021042608134099300_DEV127191C25) 2015; 5 Graw (2021042608134099300_DEV127191C15) 2009; 88 VandeBerg (2021042608134099300_DEV127191C50) 1985; 12 McCarrey (2021042608134099300_DEV127191C30) 2002; 34 McCarrey (2021042608134099300_DEV127191C29) 1992; 154 Wendt (2021042608134099300_DEV127191C54) 2008; 451 Kumari (2021042608134099300_DEV127191C22) 1996; 271 Dowen (2021042608134099300_DEV127191C11) 2014; 159 Robinson (2021042608134099300_DEV127191C39) 1996; 37 McCarrey (2021042608134099300_DEV127191C28) 2001 Ichijima (2021042608134099300_DEV127191C16) 2011; 25 Lifschytz (2021042608134099300_DEV127191C23) 1972; 69 Marcon (2021042608134099300_DEV127191C27) 2008; 16 Lingenfelter (2021042608134099300_DEV127191C24) 1998; 18 Royo (2021042608134099300_DEV127191C40) 2010; 20 Khil (2021042608134099300_DEV127191C20) 2005; 40 Filipowicz (2021042608134099300_DEV127191C13) 2005; 15 Mueller (2021042608134099300_DEV127191C114) 2008; 40 Burgoyne (2021042608134099300_DEV127191C5) 1982; 61 Namekawa (2021042608134099300_DEV127191C34) 2011; 6 Kelly (2021042608134099300_DEV127191C18) 2002; 129 Turner (2021042608134099300_DEV127191C47) 2004; 14 Modzelewski (2021042608134099300_DEV127191C32) 2012; 23 Chaumeil (2021042608134099300_DEV127191C8) 2006; 20 Monesi (2021042608134099300_DEV127191C33) 1965; 17 Fernandez-Capetillo (2021042608134099300_DEV127191C12) 2003; 4 Yan (2021042608134099300_DEV127191C55) 2009; 4 Osborne (2021042608134099300_DEV127191C36) 2004; 36 Berletch (2021042608134099300_DEV127191C1) 2011; 130 Vibranovski (2021042608134099300_DEV127191C51) 2014; 2 Turner (2021042608134099300_DEV127191C45) 2007; 134 Wang (2021042608134099300_DEV127191C52) 2001; 27 Carrel (2021042608134099300_DEV127191C6) 2005; 434 15925505 - Curr Opin Struct Biol. 2005 Jun;15(3):331-41 21206922 - PLoS One. 2010;5(12):e15317 17329371 - Development. 2007 May;134(10):1823-31 15748293 - BMC Genomics. 2005;6:29 23791181 - Cell. 2013 Jun 20;153(7):1537-51 19305411 - Nat Genet. 2009 Apr;41(4):488-93 16912274 - Genes Dev. 2006 Aug 15;20(16):2223-37 12434336 - Genesis. 2002 Dec;34(4):257-66 15536132 - Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16583-7 21614513 - Hum Genet. 2011 Aug;130(2):237-45 25785854 - PLoS Genet. 2015 Mar;11(3):e1005079 15589157 - Curr Biol. 2004 Dec 14;14(23):2135-42 16118233 - Hum Mol Genet. 2005 Oct 1;14(19):2911-8 8843195 - Genes Dev. 1996 Oct 1;10(19):2423-37 7129448 - Hum Genet. 1982;61(2):85-90 18454149 - Nat Genet. 2008 Jun;40(6):794-9 21536735 - Genes Dev. 2011 May 1;25(9):959-71 4621547 - Proc Natl Acad Sci U S A. 1972 Jan;69(1):182-6 16581510 - Curr Biol. 2006 Apr 4;16(7):660-7 21372809 - Nat Protoc. 2011 Mar;6(3):270-84 21093264 - Curr Biol. 2010 Dec 7;20(23):2117-23 23824539 - Genes Dev. 2013 Jul 1;27(13):1484-94 16338684 - Crit Rev Biochem Mol Biol. 2005 Nov-Dec;40(6):313-30 1426623 - Dev Biol. 1992 Nov;154(1):160-8 16580996 - Dev Cell. 2006 Apr;10(4):521-9 2911388 - Nature. 1989 Jan 26;337(6205):373-6 16682630 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7688-93 19838052 - Epigenetics. 2009 Oct 1;4(7):452-6 11807039 - Development. 2002 Jan;129(2):479-92 22863743 - Dev Cell. 2012 Aug 14;23(2):251-64 6542485 - Cytogenet Cell Genet. 1984;38(4):241-7 25417157 - Cell. 2014 Nov 6;159(4):800-13 19007775 - Exp Eye Res. 2009 Feb;88(2):173-89 5833946 - Chromosoma. 1965;17(1):11-21 8843924 - Invest Ophthalmol Vis Sci. 1996 Oct;37(11):2276-84 3886593 - Isozymes Curr Top Biol Med Res. 1985;12:133-87 15580272 - Nat Genet. 2005 Jan;37(1):41-7 15361872 - Nat Genet. 2004 Oct;36(10):1065-71 25634318 - Sci Rep. 2015;5:8084 15772666 - Nature. 2005 Mar 17;434(7031):400-4 8662942 - J Biol Chem. 1996 Jun 14;271(24):14390-7 25303531 - Cell. 2014 Oct 9;159(2):374-87 22366883 - Chromosoma. 2012 Jun;121(3):307-26 11279525 - Nat Genet. 2001 Apr;27(4):422-6 25057326 - J Genomics. 2014 Jun 01;2:104-17 19685339 - Methods Mol Biol. 2009;558:433-44 8570696 - Philos Trans R Soc Lond B Biol Sci. 1995 Nov 29;350(1333):305-11; discussion 311-2 18204908 - Chromosome Res. 2008;16(2):243-60 18235444 - Nature. 2008 Feb 14;451(7180):796-801 8432196 - Chromosoma. 1993 Jan;102(2):71-80 12356914 - J Cell Sci. 2002 Nov 1;115(Pt 21):4097-105 9500539 - Nat Genet. 1998 Mar;18(3):212-3 12689589 - Dev Cell. 2003 Apr;4(4):497-508 17622196 - PLoS Biol. 2007 Aug;5(8):e192 |
References_xml | – volume: 134 start-page: 1823 year: 2007 ident: 2021042608134099300_DEV127191C45 article-title: Meiotic sex chromosome inactivation publication-title: Development doi: 10.1242/dev.000018 – volume: 27 start-page: 1484 year: 2013 ident: 2021042608134099300_DEV127191C41 article-title: ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing publication-title: Genes Dev. doi: 10.1101/gad.219477.113 – volume: 5 start-page: e192 year: 2007 ident: 2021042608134099300_DEV127191C37 article-title: Myc dynamically and preferentially relocates to a transcription factory occupied by Igh publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050192 – volume: 115 start-page: 4097 year: 2002 ident: 2021042608134099300_DEV127191C46 article-title: Meiotic sex chromosome inactivation in male mice with targeted disruptions of Xist publication-title: J. Cell Sci. doi: 10.1242/jcs.00111 – volume: 69 start-page: 182 year: 1972 ident: 2021042608134099300_DEV127191C23 article-title: The role of X-chromosome inactivation during spermatogenesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.69.1.182 – volume: 130 start-page: 237 year: 2011 ident: 2021042608134099300_DEV127191C1 article-title: Genes that escape from X inactivation publication-title: Hum. Genet. doi: 10.1007/s00439-011-1011-z – volume: 271 start-page: 14390 year: 1996 ident: 2021042608134099300_DEV127191C22 article-title: Differential appearance of DNase I-hypersensitive sites correlates with differential transcription of Pgk genes during spermatogenesis in the mouse publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.24.14390 – volume: 37 start-page: 2276 year: 1996 ident: 2021042608134099300_DEV127191C39 article-title: Differential expression of alpha A- and alpha B-crystallin during murine ocular development publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 11 start-page: e1005079 year: 2015 ident: 2021042608134099300_DEV127191C2 article-title: Escape from X inactivation varies in mouse tissues publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005079 – volume: 121 start-page: 307 year: 2012 ident: 2021042608134099300_DEV127191C38 article-title: Inactivation or non-reactivation: what accounts better for the silence of sex chromosomes during mammalian male meiosis? publication-title: Chromosoma doi: 10.1007/s00412-012-0364-y – volume: 23 start-page: 251 year: 2012 ident: 2021042608134099300_DEV127191C32 article-title: AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germline publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.07.003 – volume: 29 start-page: 159 year: 1934 ident: 2021042608134099300_DEV127191C21 article-title: The genetical and mechanical properties of the sex-chromosomes publication-title: J. Genet. doi: 10.1007/BF02982193 – volume: 16 start-page: 660 year: 2006 ident: 2021042608134099300_DEV127191C35 article-title: Postmeiotic sex chromatin in the male germline of mice publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.01.066 – volume: 101 start-page: 16583 year: 2004 ident: 2021042608134099300_DEV127191C19 article-title: Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0406325101 – volume: 20 start-page: 2223 year: 2006 ident: 2021042608134099300_DEV127191C8 article-title: A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced publication-title: Genes Dev. doi: 10.1101/gad.380906 – volume: 40 start-page: 794 year: 2008 ident: 2021042608134099300_DEV127191C114 article-title: The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression publication-title: Nat. Genet doi: 10.1038/ng.126 – volume: 558 start-page: 433 year: 2009 ident: 2021042608134099300_DEV127191C26 article-title: Using RNA FISH to study gene expression during mammalian meiosis publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60761-103-5_25 – volume: 34 start-page: 257 year: 2002 ident: 2021042608134099300_DEV127191C30 article-title: X-chromosome inactivation during spermatogenesis is regulated by an Xist/Tsix-independent mechanism in the mouse publication-title: Genesis doi: 10.1002/gene.10163 – volume: 25 start-page: 959 year: 2011 ident: 2021042608134099300_DEV127191C16 article-title: MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells publication-title: Genes Dev. doi: 10.1101/gad.2030811 – volume: 61 start-page: 85 year: 1982 ident: 2021042608134099300_DEV127191C5 article-title: Genetic homology and crossing over in the X and Y chromosomes of mammals publication-title: Hum. Genet. doi: 10.1007/BF00274192 – volume: 4 start-page: 497 year: 2003 ident: 2021042608134099300_DEV127191C12 article-title: H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis publication-title: Dev. Cell doi: 10.1016/S1534-5807(03)00093-5 – volume: 337 start-page: 373 year: 1989 ident: 2021042608134099300_DEV127191C3 article-title: Genetically haploid spermatids are phenotypically diploid publication-title: Nature doi: 10.1038/337373a0 – volume: 36 start-page: 1065 year: 2004 ident: 2021042608134099300_DEV127191C36 article-title: Active genes dynamically colocalize to shared sites of ongoing transcription publication-title: Nat. Genet. doi: 10.1038/ng1423 – volume: 5 start-page: e15317 year: 2010 ident: 2021042608134099300_DEV127191C4 article-title: Analysis of microRNA expression in the prepubertal testis publication-title: PLoS ONE doi: 10.1371/journal.pone.0015317 – volume: 15 start-page: 331 year: 2005 ident: 2021042608134099300_DEV127191C13 article-title: Post-transcriptional gene silencing by siRNAs and miRNAs publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2005.05.006 – volume: 38 start-page: 241 year: 1984 ident: 2021042608134099300_DEV127191C7 article-title: On the nature and extent of XY pairing at meiotic prophase in man publication-title: Cytogenet. Genome Res. doi: 10.1159/000132070 – volume: 16 start-page: 243 year: 2008 ident: 2021042608134099300_DEV127191C27 article-title: miRNA and piRNA localization in the male mammalian meiotic nucleus publication-title: Chromosome Res. doi: 10.1007/s10577-007-1190-6 – volume: 159 start-page: 374 year: 2014 ident: 2021042608134099300_DEV127191C11 article-title: Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes publication-title: Cell doi: 10.1016/j.cell.2014.09.030 – volume: 40 start-page: 313 year: 2005 ident: 2021042608134099300_DEV127191C20 article-title: Molecular features and functional constraints in the evolution of the mammalian X chromosome publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409230500356703 – volume: 18 start-page: 212 year: 1998 ident: 2021042608134099300_DEV127191C24 article-title: Escape from X inactivation of Smcx is preceded by silencing during mouse development publication-title: Nat. Genet. doi: 10.1038/ng0398-212 – volume: 6 start-page: 29 year: 2005 ident: 2021042608134099300_DEV127191C10 article-title: Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order publication-title: BMC Genomics doi: 10.1186/1471-2164-6-29 – volume: 153 start-page: 1537 year: 2013 ident: 2021042608134099300_DEV127191C44 article-title: Jpx RNA activates Xist by evicting CTCF publication-title: Cell doi: 10.1016/j.cell.2013.05.028 – volume: 10 start-page: 2423 year: 1996 ident: 2021042608134099300_DEV127191C17 article-title: The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes publication-title: Genes Dev. doi: 10.1101/gad.10.19.2423 – volume: 14 start-page: 2911 year: 2005 ident: 2021042608134099300_DEV127191C53 article-title: Differential expression of sex-linked and autosomal germ-cell-specific genes during spermatogenesis in the mouse publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddi322 – volume: 5 start-page: 8084 year: 2015 ident: 2021042608134099300_DEV127191C25 article-title: Fractionation of human spermatogenic cells using STA-PUT gravity sedimentation and their miRNA profiling publication-title: Sci. Rep. doi: 10.1038/srep08084 – volume: 159 start-page: 800 year: 2014 ident: 2021042608134099300_DEV127191C42 article-title: Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes publication-title: Cell doi: 10.1016/j.cell.2014.09.052 – volume: 2 start-page: 104 year: 2014 ident: 2021042608134099300_DEV127191C51 article-title: Meiotic sex chromosome inactivation in Drosophila publication-title: J. Genomics doi: 10.7150/jgen.8178 – volume: 434 start-page: 400 year: 2005 ident: 2021042608134099300_DEV127191C6 article-title: X-inactivation profile reveals extensive variability in X-linked gene expression in females publication-title: Nature doi: 10.1038/nature03479 – volume: 20 start-page: 2117 year: 2010 ident: 2021042608134099300_DEV127191C40 article-title: Evidence that meiotic sex chromosome inactivation is essential for male fertility publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.11.010 – volume: 17 start-page: 11 year: 1965 ident: 2021042608134099300_DEV127191C33 article-title: Differential rate of ribonucleic acid synthesis in the autosomes and sex chromosomes during male meiosis in the mouse publication-title: Chromosoma doi: 10.1007/BF00285153 – volume: 12 start-page: 133 year: 1985 ident: 2021042608134099300_DEV127191C50 article-title: The phosphoglycerate kinase isozyme system in mammals: biochemical, genetic, developmental, and evolutionary aspects publication-title: Isozymes Curr. Top. Biol. Med. Res. – volume: 14 start-page: 2135 year: 2004 ident: 2021042608134099300_DEV127191C47 article-title: BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.11.032 – volume: 37 start-page: 41 year: 2005 ident: 2021042608134099300_DEV127191C48 article-title: Silencing of unsynapsed meiotic chromosomes in the mouse publication-title: Nat. Genet. doi: 10.1038/ng1484 – volume: 129 start-page: 479 year: 2002 ident: 2021042608134099300_DEV127191C18 article-title: X-chromosome silencing in the germline of C. elegans publication-title: Development doi: 10.1242/dev.129.2.479 – volume: 4 start-page: 452 year: 2009 ident: 2021042608134099300_DEV127191C55 article-title: Sex chromosome inactivation in the male publication-title: Epigenetics doi: 10.4161/epi.4.7.9923 – volume: 41 start-page: 488 year: 2009 ident: 2021042608134099300_DEV127191C43 article-title: Many X-linked microRNAs escape meiotic sex chromosome inactivation publication-title: Nat. Genet. doi: 10.1038/ng.338 – start-page: 59 volume-title: Gene Families: Studies of DNA, RNA, Enzymes and Proteins year: 2001 ident: 2021042608134099300_DEV127191C28 article-title: X-chromosome inactivation during spermatogenesis: the original dosage compensation mechanism in mammals? doi: 10.1142/9789812810557_0007 – volume: 10 start-page: 521 year: 2006 ident: 2021042608134099300_DEV127191C49 article-title: Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids publication-title: Dev. Cell doi: 10.1016/j.devcel.2006.02.009 – volume: 103 start-page: 7688 year: 2006 ident: 2021042608134099300_DEV127191C9 article-title: The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0601069103 – volume: 27 start-page: 422 year: 2001 ident: 2021042608134099300_DEV127191C52 article-title: An abundance of X-linked genes expressed in spermatogonia publication-title: Nat. Genet. doi: 10.1038/86927 – volume: 154 start-page: 160 year: 1992 ident: 2021042608134099300_DEV127191C29 article-title: Differential transcription of Pgk genes during spermatogenesis in the mouse publication-title: Dev. Biol. doi: 10.1016/0012-1606(92)90056-M – volume: 451 start-page: 796 year: 2008 ident: 2021042608134099300_DEV127191C54 article-title: Cohesin mediates transcriptional insulation by CCCTC-binding factor publication-title: Nature doi: 10.1038/nature06634 – volume: 350 start-page: 305 year: 1995 ident: 2021042608134099300_DEV127191C14 article-title: The evolution of mammalian sex chromosomes and the origin of sex determining genes [and Discussion] publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.1995.0166 – volume: 102 start-page: 71 year: 1993 ident: 2021042608134099300_DEV127191C31 article-title: Sex chromosomes, recombination, and chromatin conformation publication-title: Chromosoma doi: 10.1007/BF00356023 – volume: 88 start-page: 173 year: 2009 ident: 2021042608134099300_DEV127191C15 article-title: Genetics of crystallins: cataract and beyond publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2008.10.011 – volume: 6 start-page: 270 year: 2011 ident: 2021042608134099300_DEV127191C34 article-title: Detection of nascent RNA, single-copy DNA and protein localization by immunoFISH in mouse germ cells and preimplantation embryos publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.195 – reference: 23824539 - Genes Dev. 2013 Jul 1;27(13):1484-94 – reference: 4621547 - Proc Natl Acad Sci U S A. 1972 Jan;69(1):182-6 – reference: 19007775 - Exp Eye Res. 2009 Feb;88(2):173-89 – reference: 6542485 - Cytogenet Cell Genet. 1984;38(4):241-7 – reference: 17622196 - PLoS Biol. 2007 Aug;5(8):e192 – reference: 25303531 - Cell. 2014 Oct 9;159(2):374-87 – reference: 22863743 - Dev Cell. 2012 Aug 14;23(2):251-64 – reference: 15361872 - Nat Genet. 2004 Oct;36(10):1065-71 – reference: 19685339 - Methods Mol Biol. 2009;558:433-44 – reference: 7129448 - Hum Genet. 1982;61(2):85-90 – reference: 8432196 - Chromosoma. 1993 Jan;102(2):71-80 – reference: 8843924 - Invest Ophthalmol Vis Sci. 1996 Oct;37(11):2276-84 – reference: 16580996 - Dev Cell. 2006 Apr;10(4):521-9 – reference: 8662942 - J Biol Chem. 1996 Jun 14;271(24):14390-7 – reference: 18454149 - Nat Genet. 2008 Jun;40(6):794-9 – reference: 8570696 - Philos Trans R Soc Lond B Biol Sci. 1995 Nov 29;350(1333):305-11; discussion 311-2 – reference: 18235444 - Nature. 2008 Feb 14;451(7180):796-801 – reference: 21093264 - Curr Biol. 2010 Dec 7;20(23):2117-23 – reference: 19305411 - Nat Genet. 2009 Apr;41(4):488-93 – reference: 12689589 - Dev Cell. 2003 Apr;4(4):497-508 – reference: 11279525 - Nat Genet. 2001 Apr;27(4):422-6 – reference: 25057326 - J Genomics. 2014 Jun 01;2:104-17 – reference: 15536132 - Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16583-7 – reference: 21614513 - Hum Genet. 2011 Aug;130(2):237-45 – reference: 15925505 - Curr Opin Struct Biol. 2005 Jun;15(3):331-41 – reference: 15580272 - Nat Genet. 2005 Jan;37(1):41-7 – reference: 22366883 - Chromosoma. 2012 Jun;121(3):307-26 – reference: 25417157 - Cell. 2014 Nov 6;159(4):800-13 – reference: 23791181 - Cell. 2013 Jun 20;153(7):1537-51 – reference: 21536735 - Genes Dev. 2011 May 1;25(9):959-71 – reference: 15589157 - Curr Biol. 2004 Dec 14;14(23):2135-42 – reference: 5833946 - Chromosoma. 1965;17(1):11-21 – reference: 2911388 - Nature. 1989 Jan 26;337(6205):373-6 – reference: 16581510 - Curr Biol. 2006 Apr 4;16(7):660-7 – reference: 25785854 - PLoS Genet. 2015 Mar;11(3):e1005079 – reference: 15772666 - Nature. 2005 Mar 17;434(7031):400-4 – reference: 3886593 - Isozymes Curr Top Biol Med Res. 1985;12:133-87 – reference: 16338684 - Crit Rev Biochem Mol Biol. 2005 Nov-Dec;40(6):313-30 – reference: 12356914 - J Cell Sci. 2002 Nov 1;115(Pt 21):4097-105 – reference: 19838052 - Epigenetics. 2009 Oct 1;4(7):452-6 – reference: 8843195 - Genes Dev. 1996 Oct 1;10(19):2423-37 – reference: 9500539 - Nat Genet. 1998 Mar;18(3):212-3 – reference: 11807039 - Development. 2002 Jan;129(2):479-92 – reference: 1426623 - Dev Biol. 1992 Nov;154(1):160-8 – reference: 18204908 - Chromosome Res. 2008;16(2):243-60 – reference: 17329371 - Development. 2007 May;134(10):1823-31 – reference: 25634318 - Sci Rep. 2015;5:8084 – reference: 16912274 - Genes Dev. 2006 Aug 15;20(16):2223-37 – reference: 12434336 - Genesis. 2002 Dec;34(4):257-66 – reference: 21206922 - PLoS One. 2010;5(12):e15317 – reference: 15748293 - BMC Genomics. 2005;6:29 – reference: 21372809 - Nat Protoc. 2011 Mar;6(3):270-84 – reference: 16118233 - Hum Mol Genet. 2005 Oct 1;14(19):2911-8 – reference: 16682630 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7688-93 |
SSID | ssj0003677 |
Score | 2.3206193 |
Snippet | Past studies indicated that transcription of all X-linked genes is repressed by Meiotic Sex Chromosome Inactivation (MSCI) during the meiotic phase of... Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3791 |
SubjectTerms | Animals Chromosomes, Mammalian In Situ Hybridization, Fluorescence Male Meiosis Mice - genetics Mice - metabolism MicroRNAs Spermatocytes - metabolism Spermatogenesis Testis - cytology Testis - metabolism Transcription, Genetic X Chromosome - metabolism X Chromosome Inactivation Y Chromosome - metabolism |
Title | Escape of X-linked miRNA genes from meiotic sex chromosome inactivation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26395485 https://www.proquest.com/docview/1730680930 https://www.proquest.com/docview/1808654423 https://pubmed.ncbi.nlm.nih.gov/PMC4647214 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELagCMQLgnJtOWQELwgFcthx8liVhXK0D9CKhZfIcRw1UjepNrsV5dczYzvH0oKAlyhyZjcrf9-OZ-w5CHkmYY1V4HJ5uBx5TBbak3EgvTKKSo7HZKmpzr-3H-8esvczPhuacZrskmX-Uv24MK_kf1CFMcAVs2T_Adn-S2EA7gFfuALCcP0rjKcthi-hvTfz8CQWjMd59Wl_G_si69amjsx11WBR1lZ_f6GOMPiubeZYKQQzGk4HXJyBOgoiMge8XUrXaMfgc9Mai3NaLyobsu0Y0Cyszvm4qnpL_avdYP2iq2EHcAfDg8-6QGAXsuh2HgLuUvDMwmG1JcPz38D9gE6dsnDEG5v-7LRjJGxnrnNqG-wEmOtCn8KtCNaFYMpP5gbAEKwpcLD4sHT1AYXdo8vkSgj-ArayeP3uQ78kR7EQrjYtvOrV8CKsBe0-um6YnPM2fg2aHVkhBzfJDec-0G3LhVvkkq43yVXbUPRsk1zbc6ESMPitMYO3yVtLE9qUtKMJNTShhiYUaUIdTSjQhA40oWOa3CGHb6YHO7ue65_hKQBm6Ym8jIoiKkMFStrPZSLjPBJFUHDF_VilrIjzQCYqVqJIAyVUmWuuCl7KFKz4mEd3yUbd1Po-oT4rZQ6-RJSIhIVMJCAoQYQLmXKlygl53k1eplxxeexxcpyhkwlznsGcZ3bOJ-RpL3tiS6pcKPWkwyADjYfHWLLWzarNAliU4sRPI_8PMgm46pyBrzAh9yxu_bs6wCdErCHaC2DF9fUndXVkKq8zbLYQsK3ffucDcn34pzwkG8vFSj8Cq3WZPzaM_AkAl5eO |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Escape+of+X-linked+miRNA+genes+from+meiotic+sex+chromosome+inactivation&rft.jtitle=Development+%28Cambridge%29&rft.au=Sosa%2C+Enrique&rft.au=Flores%2C+Luis&rft.au=Yan%2C+Wei&rft.au=McCarrey%2C+John+R&rft.date=2015-11-01&rft.eissn=1477-9129&rft.volume=142&rft.issue=21&rft.spage=3791&rft_id=info:doi/10.1242%2Fdev.127191&rft_id=info%3Apmid%2F26395485&rft.externalDocID=26395485 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |