Escape of X-linked miRNA genes from meiotic sex chromosome inactivation

Past studies indicated that transcription of all X-linked genes is repressed by Meiotic Sex Chromosome Inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However more recent studies showed an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocyt...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 142; no. 21; pp. 3791 - 3800
Main Authors Sosa, Enrique, Flores, Luis, Yan, Wei, McCarrey, John R.
Format Journal Article
LanguageEnglish
Published England The Company of Biologists 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Past studies indicated that transcription of all X-linked genes is repressed by Meiotic Sex Chromosome Inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However more recent studies showed an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA pol II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis.
AbstractList Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis. Summary: During mouse spermatogenesis, some miRNA genes escape pan-chromosomal silencing of the X, in a process involving their physical relocation away from the XY body heterochromatin domain.
Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis.
Past studies indicated that transcription of all X-linked genes is repressed by Meiotic Sex Chromosome Inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However more recent studies showed an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA pol II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis.
Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis. Summary: During mouse spermatogenesis, some miRNA genes escape pan-chromosomal silencing of the X, in a process involving their physical relocation away from the XY body heterochromatin domain.
Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis.Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis.
Author Flores, Luis
McCarrey, John R.
Sosa, Enrique
Yan, Wei
AuthorAffiliation 1 Department of Biology , University of Texas at San Antonio , San Antonio, TX 78249 , USA
2 Department of Physiology & Cell Biology , University of Nevada School of Medicine , Reno, NV 89557 , USA
AuthorAffiliation_xml – name: 1 Department of Biology , University of Texas at San Antonio , San Antonio, TX 78249 , USA
– name: 2 Department of Physiology & Cell Biology , University of Nevada School of Medicine , Reno, NV 89557 , USA
Author_xml – sequence: 1
  givenname: Enrique
  surname: Sosa
  fullname: Sosa, Enrique
  organization: Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
– sequence: 2
  givenname: Luis
  surname: Flores
  fullname: Flores, Luis
  organization: Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
– sequence: 3
  givenname: Wei
  surname: Yan
  fullname: Yan, Wei
  organization: Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
– sequence: 4
  givenname: John R.
  surname: McCarrey
  fullname: McCarrey, John R.
  organization: Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26395485$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9rFTEQxYO02Nvqix9A8iiFbZPNv82LUEqtQqkgCr6F7GS2je4m183ei357o7ctVgSfZpj5zeEw55DspZyQkBecnfBWtqcBt7Ux3PInZMWlMY3lrd0jK2YVa7i1_IAclvKFMSa0MU_JQauFVbJTK3J5UcCvkeaBfm7GmL5ioFP8cH1GbzBhocOcJzphzEsEWvA7hds6ySVPSGPysMStX2JOz8j-4MeCz-_qEfn05uLj-dvm6v3lu_Ozqwaqr6Ux_SBCEEMLXcdY7zuve2ECDwoU02Bl0D33HWgwwXIwMPSoIKjBW6aMVuKIvN7prjf9hAEwLbMf3XqOk59_uOyje7xJ8dbd5K2TWpqWyyrw6k5gzt82WBY3xQI4jj5h3hTHO9ZpJWUr_o8awXTHrGAVffmnrQc_94-uANsBMOdSZhwcxOX356rLODrO3K8sXc3S7bKsJ8d_ndyr_gP-CXP1oEw
CitedBy_id crossref_primary_10_1371_journal_pone_0211739
crossref_primary_10_15252_embr_201949024
crossref_primary_10_15252_embr_201949354
crossref_primary_10_3389_fcell_2021_626020
crossref_primary_10_1111_and_13602
crossref_primary_10_1093_biolre_iox084
crossref_primary_10_1093_biolre_iox150
crossref_primary_10_1101_gr_225391_117
crossref_primary_10_1016_j_cub_2017_04_017
crossref_primary_10_1002_ajmg_c_31672
crossref_primary_10_1242_dev_136721
crossref_primary_10_1093_molbev_msz001
Cites_doi 10.1242/dev.000018
10.1101/gad.219477.113
10.1371/journal.pbio.0050192
10.1242/jcs.00111
10.1073/pnas.69.1.182
10.1007/s00439-011-1011-z
10.1074/jbc.271.24.14390
10.1371/journal.pgen.1005079
10.1007/s00412-012-0364-y
10.1016/j.devcel.2012.07.003
10.1007/BF02982193
10.1016/j.cub.2006.01.066
10.1073/pnas.0406325101
10.1101/gad.380906
10.1038/ng.126
10.1007/978-1-60761-103-5_25
10.1002/gene.10163
10.1101/gad.2030811
10.1007/BF00274192
10.1016/S1534-5807(03)00093-5
10.1038/337373a0
10.1038/ng1423
10.1371/journal.pone.0015317
10.1016/j.sbi.2005.05.006
10.1159/000132070
10.1007/s10577-007-1190-6
10.1016/j.cell.2014.09.030
10.1080/10409230500356703
10.1038/ng0398-212
10.1186/1471-2164-6-29
10.1016/j.cell.2013.05.028
10.1101/gad.10.19.2423
10.1093/hmg/ddi322
10.1038/srep08084
10.1016/j.cell.2014.09.052
10.7150/jgen.8178
10.1038/nature03479
10.1016/j.cub.2010.11.010
10.1007/BF00285153
10.1016/j.cub.2004.11.032
10.1038/ng1484
10.1242/dev.129.2.479
10.4161/epi.4.7.9923
10.1038/ng.338
10.1142/9789812810557_0007
10.1016/j.devcel.2006.02.009
10.1073/pnas.0601069103
10.1038/86927
10.1016/0012-1606(92)90056-M
10.1038/nature06634
10.1098/rstb.1995.0166
10.1007/BF00356023
10.1016/j.exer.2008.10.011
10.1038/nprot.2010.195
ContentType Journal Article
Copyright 2015. Published by The Company of Biologists Ltd.
2015. Published by The Company of Biologists Ltd 2015
Copyright_xml – notice: 2015. Published by The Company of Biologists Ltd.
– notice: 2015. Published by The Company of Biologists Ltd 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
DOI 10.1242/dev.127191
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE
CrossRef
Genetics Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1477-9129
EndPage 3800
ExternalDocumentID PMC4647214
26395485
10_1242_dev_127191
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R25 GM060655
– fundername: NICHD NIH HHS
  grantid: HD60858
– fundername: NIMHD NIH HHS
  grantid: G12MD007591
– fundername: NIMHD NIH HHS
  grantid: G12 MD007591
– fundername: NICHD NIH HHS
  grantid: R03 HD074573
– fundername: NICHD NIH HHS
  grantid: R01 HD060858
– fundername: NICHD NIH HHS
  grantid: R21 HD071736
– fundername: NIGMS NIH HHS
  grantid: R25GM060655
GroupedDBID ---
-DZ
-ET
-~X
.55
0R~
186
18M
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAYXX
ABZEH
ACGFS
ACMFV
ACPRK
ACREN
ADBBV
ADFRT
ADVGF
AENEX
AETEA
AFFNX
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
HZ~
INIJC
KQ8
O9-
OK1
P2P
R.V
RCB
RHI
SJN
TR2
TWZ
UPT
W8F
WH7
WOQ
X7M
XJT
XSW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c477t-7bf3dd3f2c8800ba8a6b37d1d5c506c94d6b1a8c6c7d91c7cfbe5cd5fa9057653
ISSN 0950-1991
1477-9129
IngestDate Thu Aug 21 14:02:55 EDT 2025
Mon Jul 21 11:25:51 EDT 2025
Thu Jul 10 18:31:42 EDT 2025
Thu Apr 03 07:06:02 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Tue Jul 01 00:41:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords X inactivation
Meiosis
Germ cells
Epigenetic regulation
Male fertility
Spermatogenesis
Language English
License 2015. Published by The Company of Biologists Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-7bf3dd3f2c8800ba8a6b37d1d5c506c94d6b1a8c6c7d91c7cfbe5cd5fa9057653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4647214
PMID 26395485
PQID 1730680930
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4647214
proquest_miscellaneous_1808654423
proquest_miscellaneous_1730680930
pubmed_primary_26395485
crossref_citationtrail_10_1242_dev_127191
crossref_primary_10_1242_dev_127191
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Development (Cambridge)
PublicationTitleAlternate Development
PublicationYear 2015
Publisher The Company of Biologists
Publisher_xml – name: The Company of Biologists
References Clemson (2021042608134099300_DEV127191C9) 2006; 103
Divina (2021042608134099300_DEV127191C10) 2005; 6
Wang (2021042608134099300_DEV127191C53) 2005; 14
Turner (2021042608134099300_DEV127191C49) 2006; 10
Braun (2021042608134099300_DEV127191C3) 1989; 337
Keegan (2021042608134099300_DEV127191C17) 1996; 10
Song (2021042608134099300_DEV127191C43) 2009; 41
Berletch (2021042608134099300_DEV127191C2) 2015; 11
Sun (2021042608134099300_DEV127191C44) 2013; 153
Graves (2021042608134099300_DEV127191C14) 1995; 350
Buchold (2021042608134099300_DEV127191C4) 2010; 5
Turner (2021042608134099300_DEV127191C46) 2002; 115
Koller (2021042608134099300_DEV127191C21) 1934; 29
Turner (2021042608134099300_DEV127191C48) 2005; 37
Khalil (2021042608134099300_DEV127191C19) 2004; 101
Mahadevaiah (2021042608134099300_DEV127191C26) 2009; 558
Royo (2021042608134099300_DEV127191C41) 2013; 27
Soh (2021042608134099300_DEV127191C42) 2014; 159
Namekawa (2021042608134099300_DEV127191C35) 2006; 16
McKee (2021042608134099300_DEV127191C31) 1993; 102
Page (2021042608134099300_DEV127191C38) 2012; 121
Osborne (2021042608134099300_DEV127191C37) 2007; 5
Chandley (2021042608134099300_DEV127191C7) 1984; 38
Liu (2021042608134099300_DEV127191C25) 2015; 5
Graw (2021042608134099300_DEV127191C15) 2009; 88
VandeBerg (2021042608134099300_DEV127191C50) 1985; 12
McCarrey (2021042608134099300_DEV127191C30) 2002; 34
McCarrey (2021042608134099300_DEV127191C29) 1992; 154
Wendt (2021042608134099300_DEV127191C54) 2008; 451
Kumari (2021042608134099300_DEV127191C22) 1996; 271
Dowen (2021042608134099300_DEV127191C11) 2014; 159
Robinson (2021042608134099300_DEV127191C39) 1996; 37
McCarrey (2021042608134099300_DEV127191C28) 2001
Ichijima (2021042608134099300_DEV127191C16) 2011; 25
Lifschytz (2021042608134099300_DEV127191C23) 1972; 69
Marcon (2021042608134099300_DEV127191C27) 2008; 16
Lingenfelter (2021042608134099300_DEV127191C24) 1998; 18
Royo (2021042608134099300_DEV127191C40) 2010; 20
Khil (2021042608134099300_DEV127191C20) 2005; 40
Filipowicz (2021042608134099300_DEV127191C13) 2005; 15
Mueller (2021042608134099300_DEV127191C114) 2008; 40
Burgoyne (2021042608134099300_DEV127191C5) 1982; 61
Namekawa (2021042608134099300_DEV127191C34) 2011; 6
Kelly (2021042608134099300_DEV127191C18) 2002; 129
Turner (2021042608134099300_DEV127191C47) 2004; 14
Modzelewski (2021042608134099300_DEV127191C32) 2012; 23
Chaumeil (2021042608134099300_DEV127191C8) 2006; 20
Monesi (2021042608134099300_DEV127191C33) 1965; 17
Fernandez-Capetillo (2021042608134099300_DEV127191C12) 2003; 4
Yan (2021042608134099300_DEV127191C55) 2009; 4
Osborne (2021042608134099300_DEV127191C36) 2004; 36
Berletch (2021042608134099300_DEV127191C1) 2011; 130
Vibranovski (2021042608134099300_DEV127191C51) 2014; 2
Turner (2021042608134099300_DEV127191C45) 2007; 134
Wang (2021042608134099300_DEV127191C52) 2001; 27
Carrel (2021042608134099300_DEV127191C6) 2005; 434
15925505 - Curr Opin Struct Biol. 2005 Jun;15(3):331-41
21206922 - PLoS One. 2010;5(12):e15317
17329371 - Development. 2007 May;134(10):1823-31
15748293 - BMC Genomics. 2005;6:29
23791181 - Cell. 2013 Jun 20;153(7):1537-51
19305411 - Nat Genet. 2009 Apr;41(4):488-93
16912274 - Genes Dev. 2006 Aug 15;20(16):2223-37
12434336 - Genesis. 2002 Dec;34(4):257-66
15536132 - Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16583-7
21614513 - Hum Genet. 2011 Aug;130(2):237-45
25785854 - PLoS Genet. 2015 Mar;11(3):e1005079
15589157 - Curr Biol. 2004 Dec 14;14(23):2135-42
16118233 - Hum Mol Genet. 2005 Oct 1;14(19):2911-8
8843195 - Genes Dev. 1996 Oct 1;10(19):2423-37
7129448 - Hum Genet. 1982;61(2):85-90
18454149 - Nat Genet. 2008 Jun;40(6):794-9
21536735 - Genes Dev. 2011 May 1;25(9):959-71
4621547 - Proc Natl Acad Sci U S A. 1972 Jan;69(1):182-6
16581510 - Curr Biol. 2006 Apr 4;16(7):660-7
21372809 - Nat Protoc. 2011 Mar;6(3):270-84
21093264 - Curr Biol. 2010 Dec 7;20(23):2117-23
23824539 - Genes Dev. 2013 Jul 1;27(13):1484-94
16338684 - Crit Rev Biochem Mol Biol. 2005 Nov-Dec;40(6):313-30
1426623 - Dev Biol. 1992 Nov;154(1):160-8
16580996 - Dev Cell. 2006 Apr;10(4):521-9
2911388 - Nature. 1989 Jan 26;337(6205):373-6
16682630 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7688-93
19838052 - Epigenetics. 2009 Oct 1;4(7):452-6
11807039 - Development. 2002 Jan;129(2):479-92
22863743 - Dev Cell. 2012 Aug 14;23(2):251-64
6542485 - Cytogenet Cell Genet. 1984;38(4):241-7
25417157 - Cell. 2014 Nov 6;159(4):800-13
19007775 - Exp Eye Res. 2009 Feb;88(2):173-89
5833946 - Chromosoma. 1965;17(1):11-21
8843924 - Invest Ophthalmol Vis Sci. 1996 Oct;37(11):2276-84
3886593 - Isozymes Curr Top Biol Med Res. 1985;12:133-87
15580272 - Nat Genet. 2005 Jan;37(1):41-7
15361872 - Nat Genet. 2004 Oct;36(10):1065-71
25634318 - Sci Rep. 2015;5:8084
15772666 - Nature. 2005 Mar 17;434(7031):400-4
8662942 - J Biol Chem. 1996 Jun 14;271(24):14390-7
25303531 - Cell. 2014 Oct 9;159(2):374-87
22366883 - Chromosoma. 2012 Jun;121(3):307-26
11279525 - Nat Genet. 2001 Apr;27(4):422-6
25057326 - J Genomics. 2014 Jun 01;2:104-17
19685339 - Methods Mol Biol. 2009;558:433-44
8570696 - Philos Trans R Soc Lond B Biol Sci. 1995 Nov 29;350(1333):305-11; discussion 311-2
18204908 - Chromosome Res. 2008;16(2):243-60
18235444 - Nature. 2008 Feb 14;451(7180):796-801
8432196 - Chromosoma. 1993 Jan;102(2):71-80
12356914 - J Cell Sci. 2002 Nov 1;115(Pt 21):4097-105
9500539 - Nat Genet. 1998 Mar;18(3):212-3
12689589 - Dev Cell. 2003 Apr;4(4):497-508
17622196 - PLoS Biol. 2007 Aug;5(8):e192
References_xml – volume: 134
  start-page: 1823
  year: 2007
  ident: 2021042608134099300_DEV127191C45
  article-title: Meiotic sex chromosome inactivation
  publication-title: Development
  doi: 10.1242/dev.000018
– volume: 27
  start-page: 1484
  year: 2013
  ident: 2021042608134099300_DEV127191C41
  article-title: ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing
  publication-title: Genes Dev.
  doi: 10.1101/gad.219477.113
– volume: 5
  start-page: e192
  year: 2007
  ident: 2021042608134099300_DEV127191C37
  article-title: Myc dynamically and preferentially relocates to a transcription factory occupied by Igh
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050192
– volume: 115
  start-page: 4097
  year: 2002
  ident: 2021042608134099300_DEV127191C46
  article-title: Meiotic sex chromosome inactivation in male mice with targeted disruptions of Xist
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.00111
– volume: 69
  start-page: 182
  year: 1972
  ident: 2021042608134099300_DEV127191C23
  article-title: The role of X-chromosome inactivation during spermatogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.69.1.182
– volume: 130
  start-page: 237
  year: 2011
  ident: 2021042608134099300_DEV127191C1
  article-title: Genes that escape from X inactivation
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-011-1011-z
– volume: 271
  start-page: 14390
  year: 1996
  ident: 2021042608134099300_DEV127191C22
  article-title: Differential appearance of DNase I-hypersensitive sites correlates with differential transcription of Pgk genes during spermatogenesis in the mouse
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.24.14390
– volume: 37
  start-page: 2276
  year: 1996
  ident: 2021042608134099300_DEV127191C39
  article-title: Differential expression of alpha A- and alpha B-crystallin during murine ocular development
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 11
  start-page: e1005079
  year: 2015
  ident: 2021042608134099300_DEV127191C2
  article-title: Escape from X inactivation varies in mouse tissues
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005079
– volume: 121
  start-page: 307
  year: 2012
  ident: 2021042608134099300_DEV127191C38
  article-title: Inactivation or non-reactivation: what accounts better for the silence of sex chromosomes during mammalian male meiosis?
  publication-title: Chromosoma
  doi: 10.1007/s00412-012-0364-y
– volume: 23
  start-page: 251
  year: 2012
  ident: 2021042608134099300_DEV127191C32
  article-title: AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germline
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2012.07.003
– volume: 29
  start-page: 159
  year: 1934
  ident: 2021042608134099300_DEV127191C21
  article-title: The genetical and mechanical properties of the sex-chromosomes
  publication-title: J. Genet.
  doi: 10.1007/BF02982193
– volume: 16
  start-page: 660
  year: 2006
  ident: 2021042608134099300_DEV127191C35
  article-title: Postmeiotic sex chromatin in the male germline of mice
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.01.066
– volume: 101
  start-page: 16583
  year: 2004
  ident: 2021042608134099300_DEV127191C19
  article-title: Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0406325101
– volume: 20
  start-page: 2223
  year: 2006
  ident: 2021042608134099300_DEV127191C8
  article-title: A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced
  publication-title: Genes Dev.
  doi: 10.1101/gad.380906
– volume: 40
  start-page: 794
  year: 2008
  ident: 2021042608134099300_DEV127191C114
  article-title: The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression
  publication-title: Nat. Genet
  doi: 10.1038/ng.126
– volume: 558
  start-page: 433
  year: 2009
  ident: 2021042608134099300_DEV127191C26
  article-title: Using RNA FISH to study gene expression during mammalian meiosis
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60761-103-5_25
– volume: 34
  start-page: 257
  year: 2002
  ident: 2021042608134099300_DEV127191C30
  article-title: X-chromosome inactivation during spermatogenesis is regulated by an Xist/Tsix-independent mechanism in the mouse
  publication-title: Genesis
  doi: 10.1002/gene.10163
– volume: 25
  start-page: 959
  year: 2011
  ident: 2021042608134099300_DEV127191C16
  article-title: MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.2030811
– volume: 61
  start-page: 85
  year: 1982
  ident: 2021042608134099300_DEV127191C5
  article-title: Genetic homology and crossing over in the X and Y chromosomes of mammals
  publication-title: Hum. Genet.
  doi: 10.1007/BF00274192
– volume: 4
  start-page: 497
  year: 2003
  ident: 2021042608134099300_DEV127191C12
  article-title: H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(03)00093-5
– volume: 337
  start-page: 373
  year: 1989
  ident: 2021042608134099300_DEV127191C3
  article-title: Genetically haploid spermatids are phenotypically diploid
  publication-title: Nature
  doi: 10.1038/337373a0
– volume: 36
  start-page: 1065
  year: 2004
  ident: 2021042608134099300_DEV127191C36
  article-title: Active genes dynamically colocalize to shared sites of ongoing transcription
  publication-title: Nat. Genet.
  doi: 10.1038/ng1423
– volume: 5
  start-page: e15317
  year: 2010
  ident: 2021042608134099300_DEV127191C4
  article-title: Analysis of microRNA expression in the prepubertal testis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0015317
– volume: 15
  start-page: 331
  year: 2005
  ident: 2021042608134099300_DEV127191C13
  article-title: Post-transcriptional gene silencing by siRNAs and miRNAs
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2005.05.006
– volume: 38
  start-page: 241
  year: 1984
  ident: 2021042608134099300_DEV127191C7
  article-title: On the nature and extent of XY pairing at meiotic prophase in man
  publication-title: Cytogenet. Genome Res.
  doi: 10.1159/000132070
– volume: 16
  start-page: 243
  year: 2008
  ident: 2021042608134099300_DEV127191C27
  article-title: miRNA and piRNA localization in the male mammalian meiotic nucleus
  publication-title: Chromosome Res.
  doi: 10.1007/s10577-007-1190-6
– volume: 159
  start-page: 374
  year: 2014
  ident: 2021042608134099300_DEV127191C11
  article-title: Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.030
– volume: 40
  start-page: 313
  year: 2005
  ident: 2021042608134099300_DEV127191C20
  article-title: Molecular features and functional constraints in the evolution of the mammalian X chromosome
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409230500356703
– volume: 18
  start-page: 212
  year: 1998
  ident: 2021042608134099300_DEV127191C24
  article-title: Escape from X inactivation of Smcx is preceded by silencing during mouse development
  publication-title: Nat. Genet.
  doi: 10.1038/ng0398-212
– volume: 6
  start-page: 29
  year: 2005
  ident: 2021042608134099300_DEV127191C10
  article-title: Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-6-29
– volume: 153
  start-page: 1537
  year: 2013
  ident: 2021042608134099300_DEV127191C44
  article-title: Jpx RNA activates Xist by evicting CTCF
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.028
– volume: 10
  start-page: 2423
  year: 1996
  ident: 2021042608134099300_DEV127191C17
  article-title: The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes
  publication-title: Genes Dev.
  doi: 10.1101/gad.10.19.2423
– volume: 14
  start-page: 2911
  year: 2005
  ident: 2021042608134099300_DEV127191C53
  article-title: Differential expression of sex-linked and autosomal germ-cell-specific genes during spermatogenesis in the mouse
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddi322
– volume: 5
  start-page: 8084
  year: 2015
  ident: 2021042608134099300_DEV127191C25
  article-title: Fractionation of human spermatogenic cells using STA-PUT gravity sedimentation and their miRNA profiling
  publication-title: Sci. Rep.
  doi: 10.1038/srep08084
– volume: 159
  start-page: 800
  year: 2014
  ident: 2021042608134099300_DEV127191C42
  article-title: Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.052
– volume: 2
  start-page: 104
  year: 2014
  ident: 2021042608134099300_DEV127191C51
  article-title: Meiotic sex chromosome inactivation in Drosophila
  publication-title: J. Genomics
  doi: 10.7150/jgen.8178
– volume: 434
  start-page: 400
  year: 2005
  ident: 2021042608134099300_DEV127191C6
  article-title: X-inactivation profile reveals extensive variability in X-linked gene expression in females
  publication-title: Nature
  doi: 10.1038/nature03479
– volume: 20
  start-page: 2117
  year: 2010
  ident: 2021042608134099300_DEV127191C40
  article-title: Evidence that meiotic sex chromosome inactivation is essential for male fertility
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.11.010
– volume: 17
  start-page: 11
  year: 1965
  ident: 2021042608134099300_DEV127191C33
  article-title: Differential rate of ribonucleic acid synthesis in the autosomes and sex chromosomes during male meiosis in the mouse
  publication-title: Chromosoma
  doi: 10.1007/BF00285153
– volume: 12
  start-page: 133
  year: 1985
  ident: 2021042608134099300_DEV127191C50
  article-title: The phosphoglycerate kinase isozyme system in mammals: biochemical, genetic, developmental, and evolutionary aspects
  publication-title: Isozymes Curr. Top. Biol. Med. Res.
– volume: 14
  start-page: 2135
  year: 2004
  ident: 2021042608134099300_DEV127191C47
  article-title: BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.11.032
– volume: 37
  start-page: 41
  year: 2005
  ident: 2021042608134099300_DEV127191C48
  article-title: Silencing of unsynapsed meiotic chromosomes in the mouse
  publication-title: Nat. Genet.
  doi: 10.1038/ng1484
– volume: 129
  start-page: 479
  year: 2002
  ident: 2021042608134099300_DEV127191C18
  article-title: X-chromosome silencing in the germline of C. elegans
  publication-title: Development
  doi: 10.1242/dev.129.2.479
– volume: 4
  start-page: 452
  year: 2009
  ident: 2021042608134099300_DEV127191C55
  article-title: Sex chromosome inactivation in the male
  publication-title: Epigenetics
  doi: 10.4161/epi.4.7.9923
– volume: 41
  start-page: 488
  year: 2009
  ident: 2021042608134099300_DEV127191C43
  article-title: Many X-linked microRNAs escape meiotic sex chromosome inactivation
  publication-title: Nat. Genet.
  doi: 10.1038/ng.338
– start-page: 59
  volume-title: Gene Families: Studies of DNA, RNA, Enzymes and Proteins
  year: 2001
  ident: 2021042608134099300_DEV127191C28
  article-title: X-chromosome inactivation during spermatogenesis: the original dosage compensation mechanism in mammals?
  doi: 10.1142/9789812810557_0007
– volume: 10
  start-page: 521
  year: 2006
  ident: 2021042608134099300_DEV127191C49
  article-title: Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2006.02.009
– volume: 103
  start-page: 7688
  year: 2006
  ident: 2021042608134099300_DEV127191C9
  article-title: The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0601069103
– volume: 27
  start-page: 422
  year: 2001
  ident: 2021042608134099300_DEV127191C52
  article-title: An abundance of X-linked genes expressed in spermatogonia
  publication-title: Nat. Genet.
  doi: 10.1038/86927
– volume: 154
  start-page: 160
  year: 1992
  ident: 2021042608134099300_DEV127191C29
  article-title: Differential transcription of Pgk genes during spermatogenesis in the mouse
  publication-title: Dev. Biol.
  doi: 10.1016/0012-1606(92)90056-M
– volume: 451
  start-page: 796
  year: 2008
  ident: 2021042608134099300_DEV127191C54
  article-title: Cohesin mediates transcriptional insulation by CCCTC-binding factor
  publication-title: Nature
  doi: 10.1038/nature06634
– volume: 350
  start-page: 305
  year: 1995
  ident: 2021042608134099300_DEV127191C14
  article-title: The evolution of mammalian sex chromosomes and the origin of sex determining genes [and Discussion]
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.1995.0166
– volume: 102
  start-page: 71
  year: 1993
  ident: 2021042608134099300_DEV127191C31
  article-title: Sex chromosomes, recombination, and chromatin conformation
  publication-title: Chromosoma
  doi: 10.1007/BF00356023
– volume: 88
  start-page: 173
  year: 2009
  ident: 2021042608134099300_DEV127191C15
  article-title: Genetics of crystallins: cataract and beyond
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2008.10.011
– volume: 6
  start-page: 270
  year: 2011
  ident: 2021042608134099300_DEV127191C34
  article-title: Detection of nascent RNA, single-copy DNA and protein localization by immunoFISH in mouse germ cells and preimplantation embryos
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2010.195
– reference: 23824539 - Genes Dev. 2013 Jul 1;27(13):1484-94
– reference: 4621547 - Proc Natl Acad Sci U S A. 1972 Jan;69(1):182-6
– reference: 19007775 - Exp Eye Res. 2009 Feb;88(2):173-89
– reference: 6542485 - Cytogenet Cell Genet. 1984;38(4):241-7
– reference: 17622196 - PLoS Biol. 2007 Aug;5(8):e192
– reference: 25303531 - Cell. 2014 Oct 9;159(2):374-87
– reference: 22863743 - Dev Cell. 2012 Aug 14;23(2):251-64
– reference: 15361872 - Nat Genet. 2004 Oct;36(10):1065-71
– reference: 19685339 - Methods Mol Biol. 2009;558:433-44
– reference: 7129448 - Hum Genet. 1982;61(2):85-90
– reference: 8432196 - Chromosoma. 1993 Jan;102(2):71-80
– reference: 8843924 - Invest Ophthalmol Vis Sci. 1996 Oct;37(11):2276-84
– reference: 16580996 - Dev Cell. 2006 Apr;10(4):521-9
– reference: 8662942 - J Biol Chem. 1996 Jun 14;271(24):14390-7
– reference: 18454149 - Nat Genet. 2008 Jun;40(6):794-9
– reference: 8570696 - Philos Trans R Soc Lond B Biol Sci. 1995 Nov 29;350(1333):305-11; discussion 311-2
– reference: 18235444 - Nature. 2008 Feb 14;451(7180):796-801
– reference: 21093264 - Curr Biol. 2010 Dec 7;20(23):2117-23
– reference: 19305411 - Nat Genet. 2009 Apr;41(4):488-93
– reference: 12689589 - Dev Cell. 2003 Apr;4(4):497-508
– reference: 11279525 - Nat Genet. 2001 Apr;27(4):422-6
– reference: 25057326 - J Genomics. 2014 Jun 01;2:104-17
– reference: 15536132 - Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16583-7
– reference: 21614513 - Hum Genet. 2011 Aug;130(2):237-45
– reference: 15925505 - Curr Opin Struct Biol. 2005 Jun;15(3):331-41
– reference: 15580272 - Nat Genet. 2005 Jan;37(1):41-7
– reference: 22366883 - Chromosoma. 2012 Jun;121(3):307-26
– reference: 25417157 - Cell. 2014 Nov 6;159(4):800-13
– reference: 23791181 - Cell. 2013 Jun 20;153(7):1537-51
– reference: 21536735 - Genes Dev. 2011 May 1;25(9):959-71
– reference: 15589157 - Curr Biol. 2004 Dec 14;14(23):2135-42
– reference: 5833946 - Chromosoma. 1965;17(1):11-21
– reference: 2911388 - Nature. 1989 Jan 26;337(6205):373-6
– reference: 16581510 - Curr Biol. 2006 Apr 4;16(7):660-7
– reference: 25785854 - PLoS Genet. 2015 Mar;11(3):e1005079
– reference: 15772666 - Nature. 2005 Mar 17;434(7031):400-4
– reference: 3886593 - Isozymes Curr Top Biol Med Res. 1985;12:133-87
– reference: 16338684 - Crit Rev Biochem Mol Biol. 2005 Nov-Dec;40(6):313-30
– reference: 12356914 - J Cell Sci. 2002 Nov 1;115(Pt 21):4097-105
– reference: 19838052 - Epigenetics. 2009 Oct 1;4(7):452-6
– reference: 8843195 - Genes Dev. 1996 Oct 1;10(19):2423-37
– reference: 9500539 - Nat Genet. 1998 Mar;18(3):212-3
– reference: 11807039 - Development. 2002 Jan;129(2):479-92
– reference: 1426623 - Dev Biol. 1992 Nov;154(1):160-8
– reference: 18204908 - Chromosome Res. 2008;16(2):243-60
– reference: 17329371 - Development. 2007 May;134(10):1823-31
– reference: 25634318 - Sci Rep. 2015;5:8084
– reference: 16912274 - Genes Dev. 2006 Aug 15;20(16):2223-37
– reference: 12434336 - Genesis. 2002 Dec;34(4):257-66
– reference: 21206922 - PLoS One. 2010;5(12):e15317
– reference: 15748293 - BMC Genomics. 2005;6:29
– reference: 21372809 - Nat Protoc. 2011 Mar;6(3):270-84
– reference: 16118233 - Hum Mol Genet. 2005 Oct 1;14(19):2911-8
– reference: 16682630 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7688-93
SSID ssj0003677
Score 2.3206193
Snippet Past studies indicated that transcription of all X-linked genes is repressed by Meiotic Sex Chromosome Inactivation (MSCI) during the meiotic phase of...
Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3791
SubjectTerms Animals
Chromosomes, Mammalian
In Situ Hybridization, Fluorescence
Male
Meiosis
Mice - genetics
Mice - metabolism
MicroRNAs
Spermatocytes - metabolism
Spermatogenesis
Testis - cytology
Testis - metabolism
Transcription, Genetic
X Chromosome - metabolism
X Chromosome Inactivation
Y Chromosome - metabolism
Title Escape of X-linked miRNA genes from meiotic sex chromosome inactivation
URI https://www.ncbi.nlm.nih.gov/pubmed/26395485
https://www.proquest.com/docview/1730680930
https://www.proquest.com/docview/1808654423
https://pubmed.ncbi.nlm.nih.gov/PMC4647214
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELagCMQLgnJtOWQELwgFcthx8liVhXK0D9CKhZfIcRw1UjepNrsV5dczYzvH0oKAlyhyZjcrf9-OZ-w5CHkmYY1V4HJ5uBx5TBbak3EgvTKKSo7HZKmpzr-3H-8esvczPhuacZrskmX-Uv24MK_kf1CFMcAVs2T_Adn-S2EA7gFfuALCcP0rjKcthi-hvTfz8CQWjMd59Wl_G_si69amjsx11WBR1lZ_f6GOMPiubeZYKQQzGk4HXJyBOgoiMge8XUrXaMfgc9Mai3NaLyobsu0Y0Cyszvm4qnpL_avdYP2iq2EHcAfDg8-6QGAXsuh2HgLuUvDMwmG1JcPz38D9gE6dsnDEG5v-7LRjJGxnrnNqG-wEmOtCn8KtCNaFYMpP5gbAEKwpcLD4sHT1AYXdo8vkSgj-ArayeP3uQ78kR7EQrjYtvOrV8CKsBe0-um6YnPM2fg2aHVkhBzfJDec-0G3LhVvkkq43yVXbUPRsk1zbc6ESMPitMYO3yVtLE9qUtKMJNTShhiYUaUIdTSjQhA40oWOa3CGHb6YHO7ue65_hKQBm6Ym8jIoiKkMFStrPZSLjPBJFUHDF_VilrIjzQCYqVqJIAyVUmWuuCl7KFKz4mEd3yUbd1Po-oT4rZQ6-RJSIhIVMJCAoQYQLmXKlygl53k1eplxxeexxcpyhkwlznsGcZ3bOJ-RpL3tiS6pcKPWkwyADjYfHWLLWzarNAliU4sRPI_8PMgm46pyBrzAh9yxu_bs6wCdErCHaC2DF9fUndXVkKq8zbLYQsK3ffucDcn34pzwkG8vFSj8Cq3WZPzaM_AkAl5eO
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Escape+of+X-linked+miRNA+genes+from+meiotic+sex+chromosome+inactivation&rft.jtitle=Development+%28Cambridge%29&rft.au=Sosa%2C+Enrique&rft.au=Flores%2C+Luis&rft.au=Yan%2C+Wei&rft.au=McCarrey%2C+John+R&rft.date=2015-11-01&rft.eissn=1477-9129&rft.volume=142&rft.issue=21&rft.spage=3791&rft_id=info:doi/10.1242%2Fdev.127191&rft_id=info%3Apmid%2F26395485&rft.externalDocID=26395485
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon