Escape of X-linked miRNA genes from meiotic sex chromosome inactivation

Past studies indicated that transcription of all X-linked genes is repressed by Meiotic Sex Chromosome Inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However more recent studies showed an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocyt...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 142; no. 21; pp. 3791 - 3800
Main Authors Sosa, Enrique, Flores, Luis, Yan, Wei, McCarrey, John R.
Format Journal Article
LanguageEnglish
Published England The Company of Biologists 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Past studies indicated that transcription of all X-linked genes is repressed by Meiotic Sex Chromosome Inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However more recent studies showed an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA pol II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0950-1991
1477-9129
1477-9129
DOI:10.1242/dev.127191