A triple signal amplification method for chemiluminescent detection of the cancer marker microRNA-21

Mesoporous silica nanospheres (MSNs) are used in a triple signal amplification chemiluminescent (CL) assay for microRNA-21. It is based on (a) the synergistic amplification via loading and controlled-release of signal reagents by MSNs, (b) target recycling amplification, and (c) the enhancement effe...

Full description

Saved in:
Bibliographic Details
Published inMikrochimica acta (1966) Vol. 186; no. 7; p. 410
Main Authors Chen, Donghua, Wen, Siming, Peng, Rulin, Gong, Qingsong, Fei, Junjie, Fu, Zhuo, Weng, Chao, Liu, Minna
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.07.2019
Springer
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mesoporous silica nanospheres (MSNs) are used in a triple signal amplification chemiluminescent (CL) assay for microRNA-21. It is based on (a) the synergistic amplification via loading and controlled-release of signal reagents by MSNs, (b) target recycling amplification, and (c) the enhancement effect of graphene oxide quantum dots (GOQD). CL is generated by the bis(2,4,6-trichlorophenyl) oxalate (TCPO) and H 2 O 2 reaction in the presence of the fluorophore rhodamine B (RB). RB is firstly loaded into the pores of MSNs modified with amino groupsand coupled with ssDNA. Then, the pores are capped by GOQD. Upon the addition of microRNA-21 into the system, the designed ssDNA assumes a double stranded structure. With the aid of duplex-specific nuclease, the double strand structure is cleaved and the free microRNA-21 enters into the next cycling process to combine with other ssDNA forming double strand structures. After several cycling process, amounts of GOQDs departing from the surface of MSNs cause the opening of the pores of MSNs and the release of RB causes the CL of TCPO-H 2 O 2 reaction system. Free GOQDs can lead to a further CL enhancement. By this method, even a low amount of microRNA-21 leads to a large number of released RB molecules and triggers high-intensity CL. The method was applied in an assay where the CL signal increases linearly with the logarithm of the microRNA-21 concentration in the range of 0.005–50 pmol L −1 and the detection limit is 1.7 fmol L −1 (at 3σ). Graphical abstract Schematic presentation of a triple signal amplification chemiluminescence (CL) analysis platform based on rodamine B (RB) loading and controlled release, target recycling amplification and graphene oxide quantum dots (GOQD) as the enhancer for analysis of microRNA-21 in human serum.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0026-3672
1436-5073
DOI:10.1007/s00604-019-3537-z