Mannose-Binding Lectin Recognizes Peptidoglycan via the N-Acetyl Glucosamine Moiety, and Inhibits Ligand-Induced Proinflammatory Effect and Promotes Chemokine Production by Macrophages

Peptidoglycan (PGN) is the major cell wall component (90%, w/w) of Gram-positive bacteria and consists of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) disaccharide repeating arrays that are cross-linked by short peptides. We hypothesized that PGN is a ligand for pathogen-associated...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 175; no. 3; pp. 1785 - 1794
Main Authors Nadesalingam, Jeya, Dodds, Alister W, Reid, Kenneth B. M, Palaniyar, Nades
Format Journal Article
LanguageEnglish
Published United States Am Assoc Immnol 01.08.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Peptidoglycan (PGN) is the major cell wall component (90%, w/w) of Gram-positive bacteria and consists of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) disaccharide repeating arrays that are cross-linked by short peptides. We hypothesized that PGN is a ligand for pathogen-associated pattern-recognition proteins. Mannose-binding lectin (MBL) and serum amyloid component P are two carbohydrate-binding innate immune proteins present in the blood. In this study we show that human MBL, but not serum amyloid component P, binds significantly to PGN via its C-type lectin domains, and that the interaction can be more effectively competed by GlcNAc than by MurNAc. Surface plasmon resonance analyses show that native MBL binds immobilized PGN with high avidity. Competition experiments also show that both native MBL and MBL(n/CRD), a 48-kDa recombinant trimeric fragment of MBL containing neck and carbohydrate recognition domains, have higher affinity for GlcNAc than for MurNAc. Protein arrays and ELISA show that PGN increases the secretion of TNF-alpha, IL-8, IL-10, MCP-2, and RANTES from PMA-stimulated human monocytic U937 cells. Interestingly, the presence of MBL together with PGN increases the production of IL-8 and RANTES, but reduces that of TNF-alpha. Our results indicate that Gram-positive bacterial is a biologically relevant ligand for MBL, and that the collectin preferentially binds to the GlcNAc moiety of the PGN via its C-type lectin domains. MBL inhibits PGN-induced production of proinflammatory cytokines while enhancing the production of chemokines by macrophages, which suggests that MBL may down-regulate macrophage-mediated inflammation while enhancing phagocyte recruitment.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.175.3.1785