Solvers for the cardiac bidomain equations

The bidomain equations are widely used for the simulation of electrical activity in cardiac tissue. They are especially important for accurately modeling extracellular stimulation, as evidenced by their prediction of virtual electrode polarization before experimental verification. However, solution...

Full description

Saved in:
Bibliographic Details
Published inProgress in biophysics and molecular biology Vol. 96; no. 1; pp. 3 - 18
Main Authors Vigmond, E.J., Weber dos Santos, R., Prassl, A.J., Deo, M., Plank, G.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The bidomain equations are widely used for the simulation of electrical activity in cardiac tissue. They are especially important for accurately modeling extracellular stimulation, as evidenced by their prediction of virtual electrode polarization before experimental verification. However, solution of the equations is computationally expensive due to the fine spatial and temporal discretization needed. This limits the size and duration of the problem which can be modeled. Regardless of the specific form into which they are cast, the computational bottleneck becomes the repeated solution of a large, linear system. The purpose of this review is to give an overview of the equations and the methods by which they have been solved. Of particular note are recent developments in multigrid methods, which have proven to be the most efficient.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0079-6107
1873-1732
DOI:10.1016/j.pbiomolbio.2007.07.012