Solvers for the cardiac bidomain equations
The bidomain equations are widely used for the simulation of electrical activity in cardiac tissue. They are especially important for accurately modeling extracellular stimulation, as evidenced by their prediction of virtual electrode polarization before experimental verification. However, solution...
Saved in:
Published in | Progress in biophysics and molecular biology Vol. 96; no. 1; pp. 3 - 18 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The bidomain equations are widely used for the simulation of electrical activity in cardiac tissue. They are especially important for accurately modeling extracellular stimulation, as evidenced by their prediction of virtual electrode polarization before experimental verification. However, solution of the equations is computationally expensive due to the fine spatial and temporal discretization needed. This limits the size and duration of the problem which can be modeled. Regardless of the specific form into which they are cast, the computational bottleneck becomes the repeated solution of a large, linear system. The purpose of this review is to give an overview of the equations and the methods by which they have been solved. Of particular note are recent developments in multigrid methods, which have proven to be the most efficient. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 0079-6107 1873-1732 |
DOI: | 10.1016/j.pbiomolbio.2007.07.012 |