Toward site-specific, homogeneous and highly stable fluorescent silver nanoclusters fabrication on triplex DNA scaffolds
A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag(2) cluster was obtained in the predefined position of CG.C(+) site of triplex DNA. This st...
Saved in:
Published in | Nucleic acids research Vol. 40; no. 16; p. e122 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.09.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag(2) cluster was obtained in the predefined position of CG.C(+) site of triplex DNA. This strategy was also explored for controlled alignment of AgNCs on the DNA nanoscaffold. To the best of our knowledge, this was the first example to simultaneously answer the challenges of excellent site-specific nucleation and growth, homogeneity and stability against salt of DNA-templated AgNCs. |
---|---|
AbstractList | A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag sub(2) cluster was obtained in the predefined position of CG.C super(+) site of triplex DNA. This strategy was also explored for controlled alignment of AgNCs on the DNA nanoscaffold. To the best of our knowledge, this was the first example to simultaneously answer the challenges of excellent site-specific nucleation and growth, homogeneity and stability against salt of DNA-templated AgNCs. A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag(2) cluster was obtained in the predefined position of CG.C(+) site of triplex DNA. This strategy was also explored for controlled alignment of AgNCs on the DNA nanoscaffold. To the best of our knowledge, this was the first example to simultaneously answer the challenges of excellent site-specific nucleation and growth, homogeneity and stability against salt of DNA-templated AgNCs.A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag(2) cluster was obtained in the predefined position of CG.C(+) site of triplex DNA. This strategy was also explored for controlled alignment of AgNCs on the DNA nanoscaffold. To the best of our knowledge, this was the first example to simultaneously answer the challenges of excellent site-specific nucleation and growth, homogeneity and stability against salt of DNA-templated AgNCs. A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag 2 cluster was obtained in the predefined position of CG.C + site of triplex DNA. This strategy was also explored for controlled alignment of AgNCs on the DNA nanoscaffold. To the best of our knowledge, this was the first example to simultaneously answer the challenges of excellent site-specific nucleation and growth, homogeneity and stability against salt of DNA-templated AgNCs. A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag(2) cluster was obtained in the predefined position of CG.C(+) site of triplex DNA. This strategy was also explored for controlled alignment of AgNCs on the DNA nanoscaffold. To the best of our knowledge, this was the first example to simultaneously answer the challenges of excellent site-specific nucleation and growth, homogeneity and stability against salt of DNA-templated AgNCs. |
Author | Qu, Xiaogang Ren, Jinsong Feng, Lingyan Huang, Zhenzhen |
AuthorAffiliation | 1 Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2 Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China |
AuthorAffiliation_xml | – name: 1 Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2 Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China |
Author_xml | – sequence: 1 givenname: Lingyan surname: Feng fullname: Feng, Lingyan organization: Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China, Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China – sequence: 2 givenname: Zhenzhen surname: Huang fullname: Huang, Zhenzhen organization: Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China, Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China – sequence: 3 givenname: Jinsong surname: Ren fullname: Ren, Jinsong organization: Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China, Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China – sequence: 4 givenname: Xiaogang surname: Qu fullname: Qu, Xiaogang organization: Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China, Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22570417$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9vVCEUxYlpY6fVjR_AsDTGZ-HBe8DGpGltNWl0U9eEx58ZlIEReLX99qUztdHGhQnJXfC75557zyHYiylaAF5h9B4jQY6jysfLH4Vw9gwsMBn7joqx3wMLRNDQYUT5ATgs5TtCmOKBPgcHfT8wRDFbgJur9EtlA4uvtisbq73z-h1cpXVa2mjTXKCKBq78chVuYalqCha6MKdsi7axtsZwbTOMKiYd5lJtLtCpKXutqk8Rtlez3wR7A8--nMCilXMpmPIC7DsVin35UI_At_OPV6efusuvF59PTy47TRmrHSaCCdxjhcw0WWJHxbEwo1ODUZgRblhPmBaKIWeIGBqurRipxogwoidKjsCHne5mntbW3HvOKshN9muVb2VSXv79E_1KLtO1JJQIzngTePMgkNPP2ZYq176tHoLankfeR0AZQRz9B9okOeVb9PWfth79_E6mAW93gM6plGzdI4LRdqZssctd7A1GT2Dt6_b-bSUf_tVyB4r-tH8 |
CitedBy_id | crossref_primary_10_1016_j_nantod_2014_02_010 crossref_primary_10_1039_C6NR00145A crossref_primary_10_1016_j_saa_2023_122752 crossref_primary_10_1016_j_bios_2019_02_019 crossref_primary_10_1016_j_trac_2013_12_014 crossref_primary_10_1016_j_ab_2019_113365 crossref_primary_10_1039_C3AN02150E crossref_primary_10_1039_D4TC05228E crossref_primary_10_1016_j_aca_2014_08_032 crossref_primary_10_1039_c3nr01601c crossref_primary_10_1016_j_jphotobiol_2020_111886 crossref_primary_10_1093_nar_gkx1230 crossref_primary_10_1016_j_nantod_2020_101021 crossref_primary_10_1080_07391102_2022_2159878 crossref_primary_10_3390_molecules24224189 crossref_primary_10_1016_j_snb_2014_08_079 crossref_primary_10_1039_c4ay00378k crossref_primary_10_1039_c3ay40118a crossref_primary_10_1016_j_saa_2014_08_025 crossref_primary_10_1039_C5RA22489F crossref_primary_10_1002_adma_201304437 crossref_primary_10_1021_jp3091792 crossref_primary_10_1039_c3cc46025h crossref_primary_10_1021_acs_jpcb_2c05611 crossref_primary_10_1016_j_biomaterials_2014_06_034 crossref_primary_10_3389_fchem_2020_601621 crossref_primary_10_1021_am400668q crossref_primary_10_1007_s11051_020_4781_1 crossref_primary_10_1016_j_ccr_2021_214381 crossref_primary_10_1021_acssuschemeng_7b03568 crossref_primary_10_1016_j_talanta_2017_12_049 crossref_primary_10_1021_acs_jafc_3c09621 crossref_primary_10_1016_j_bios_2012_12_042 crossref_primary_10_1016_j_mattod_2016_09_012 crossref_primary_10_1007_s11426_017_9124_0 crossref_primary_10_1021_acs_chemmater_6b04150 crossref_primary_10_1016_j_aca_2024_343072 crossref_primary_10_1016_j_copbio_2013_10_013 crossref_primary_10_2139_ssrn_4201068 crossref_primary_10_1021_acs_inorgchem_8b00442 crossref_primary_10_1016_j_ccr_2023_215247 crossref_primary_10_1039_C5CP03175C crossref_primary_10_1039_C6NR05872H crossref_primary_10_1080_26395940_2024_2329660 crossref_primary_10_1016_j_bios_2017_07_016 crossref_primary_10_3390_chemosensors12120271 crossref_primary_10_1021_ac503741x crossref_primary_10_1007_s12274_017_1844_4 crossref_primary_10_1093_nar_gkt575 crossref_primary_10_1039_C5CS00607D crossref_primary_10_1039_C8CS00011E crossref_primary_10_1021_ja407911b crossref_primary_10_1039_C4CC04615C crossref_primary_10_1002_bio_3030 crossref_primary_10_1002_asia_201600459 crossref_primary_10_1016_j_talanta_2019_120257 crossref_primary_10_1038_srep44212 crossref_primary_10_1021_la402153b crossref_primary_10_1039_C8RA04716B crossref_primary_10_1039_C3DT52042K crossref_primary_10_7498_aps_70_20201430 crossref_primary_10_1039_C5AN00093A crossref_primary_10_1246_cl_140197 crossref_primary_10_1103_PhysRevE_93_052413 crossref_primary_10_1016_j_bios_2019_111926 crossref_primary_10_1007_s00604_016_1968_3 crossref_primary_10_1016_j_snb_2018_03_047 crossref_primary_10_1016_j_talanta_2018_06_051 crossref_primary_10_3390_life12050686 crossref_primary_10_1016_j_talanta_2014_09_031 crossref_primary_10_1039_c3nr00998j crossref_primary_10_1016_j_trac_2021_116292 crossref_primary_10_1021_acs_jpcb_9b09741 crossref_primary_10_1039_D0RA08066G crossref_primary_10_1039_C8NR02575D crossref_primary_10_1088_0957_4484_25_23_235501 |
ContentType | Journal Article |
Copyright | The Author(s) 2012. Published by Oxford University Press. 2012 |
Copyright_xml | – notice: The Author(s) 2012. Published by Oxford University Press. 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
DOI | 10.1093/nar/gks387 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | e122 |
ExternalDocumentID | PMC3439878 22570417 10_1093_nar_gks387 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV C1A CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EJD EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVD OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SJN SV3 TEORI TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM .55 .GJ 3O- AAWDT AAYJJ ABIME ABNGD ABPIB ABSMQ ABZEO ACFRR ACIPB ACPQN ACUKT ACVCV ACZBC AEHUL AEKPW AFSHK AGKRT AGMDO AGQPQ ANFBD APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BEYMZ CGR COF CUY CVF CXTWN D0S DFGAJ ECM EIF ELUNK FEDTE HVGLF H~9 MBTAY MVM NPM NTWIH O~Y PB- QBD RNI RZF RZO TCN UHB X7M XSW ZXP 7X8 7TM 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c477t-13979121a0dbbe3e6a819d6fa5da1738d7237c9a70fd395139ce964c10373cb43 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 14:11:33 EDT 2025 Fri Jul 11 16:46:56 EDT 2025 Thu Jul 10 17:49:37 EDT 2025 Mon Jul 21 06:03:42 EDT 2025 Tue Jul 01 01:41:12 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-13979121a0dbbe3e6a819d6fa5da1738d7237c9a70fd395139ce964c10373cb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors. |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gks387 |
PMID | 22570417 |
PQID | 1039884880 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3439878 proquest_miscellaneous_1093473080 proquest_miscellaneous_1039884880 pubmed_primary_22570417 crossref_primary_10_1093_nar_gks387 crossref_citationtrail_10_1093_nar_gks387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2012 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Yu ( key 20180801053046_gks387-B4) 2007; 46 Lesniak ( key 20180801053046_gks387-B34) 2005; 11 Pal ( key 20180801053046_gks387-B37) 2010; 49 Shen ( key 20180801053046_gks387-B35) 2007; 19 Xu ( key 20180801053046_gks387-B20) 2010; 22 Guo ( key 20180801053046_gks387-B5) 2011; 83 Sengupta ( key 20180801053046_gks387-B11) 2008; 112 Wirges ( key 20180801053046_gks387-B19) 2008; 48 Lan ( key 20180801053046_gks387-B22) 2010; 46 Rothemund ( key 20180801053046_gks387-B38) 2006; 440 Xu ( key 20180801053046_gks387-B7) 2010; 4 Ihara ( key 20180801053046_gks387-B30) 2009; 131 Beyer ( key 20180801053046_gks387-B42) 2005; 5 Feng ( key 20180801053046_gks387-B33) 2009; 480 Htun ( key 20180801053046_gks387-B27) 1989; 243 Song ( key 20180801053046_gks387-B32) 2005; 48 Béccrril ( key 20180801053046_gks387-B39) 2009; 38 Gwinn ( key 20180801053046_gks387-B14) 2008; 20 Yeh ( key 20180801053046_gks387-B10) 2010; 10 Richards ( key 20180801053046_gks387-B9) 2008; 130 Shukla ( key 20180801053046_gks387-B21) 2009; 1 Chen ( key 20180801053046_gks387-B24) 2004; 43 Burley ( key 20180801053046_gks387-B18) 2006; 128 Xing ( key 20180801053046_gks387-B29) 2005; 579 Templeton ( key 20180801053046_gks387-B3) 2000; 33 Petty ( key 20180801053046_gks387-B8) 2004; 126 Huang ( key 20180801053046_gks387-B13) 2011; 17 Sharma ( key 20180801053046_gks387-B15) 2010; 46 Keren ( key 20180801053046_gks387-B17) 2004; 4 Tumpane ( key 20180801053046_gks387-B25) 2007; 7 Zinchenko ( key 20180801053046_gks387-B45) 2008; 9 Blommers ( key 20180801053046_gks387-B23) 1998; 37 Rotaru ( key 20180801053046_gks387-B44) 2010; 49 Pal ( key 20180801053046_gks387-B16) 2011; 50 Keren ( key 20180801053046_gks387-B40) 2002; 297 Zhang ( key 20180801053046_gks387-B36) 2005; 17 Sharma ( key 20180801053046_gks387-B43) 2008; 47 Wilcoxon ( key 20180801053046_gks387-B2) 2006; 35 Takezawa ( key 20180801053046_gks387-B26) 2009; 48 Neidig ( key 20180801053046_gks387-B12) 2011; 133 Plum ( key 20180801053046_gks387-B28) 1990; 87 Zhao ( key 20180801053046_gks387-B41) 2006; 45 Zheng ( key 20180801053046_gks387-B6) 2002; 124 Lee ( key 20180801053046_gks387-B1) 2003; 100 Arakawa ( key 20180801053046_gks387-B31) 2001; 81 |
References_xml | – volume: 4 start-page: 323 year: 2004 ident: key 20180801053046_gks387-B17 article-title: Patterned DNA metallization by sequence-specific localization of a reducing agent publication-title: Nano Lett. – volume: 579 start-page: 5035 year: 2005 ident: key 20180801053046_gks387-B29 article-title: Molecular recognition of nucleic acids: coralyne binds strongly to poly(A) publication-title: FEBS Lett. – volume: 130 start-page: 5038 year: 2008 ident: key 20180801053046_gks387-B9 article-title: Oligonucleotide-stabilized Ag nanocluster fluorophores publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1981 year: 2008 ident: key 20180801053046_gks387-B45 article-title: Conformational behavior of giant DNA through binding with Ag+ and metallization publication-title: Biomacromolecules – volume: 48 start-page: 219 year: 2008 ident: key 20180801053046_gks387-B19 article-title: Controlled nucleation of DNA metallization publication-title: Angew. Chem., Int. Ed. – volume: 50 start-page: 4176 year: 2011 ident: key 20180801053046_gks387-B16 article-title: Site-specific synthesis and in situ immobilization of fluorescent silver nanoclusters on DNA nanoscaffolds by use of the Tollens reaction publication-title: Angew. Chem., Int. Ed. – volume: 19 start-page: 349 year: 2007 ident: key 20180801053046_gks387-B35 article-title: Water-soluble fluorescent Ag nanoclusters obtained from multiarm star poly (acrylic acid) as “molecular hydrogel” templates publication-title: Adv. Mater. – volume: 11 start-page: 2123 year: 2005 ident: key 20180801053046_gks387-B34 article-title: Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection publication-title: Nano Lett. – volume: 17 start-page: 3774 year: 2011 ident: key 20180801053046_gks387-B13 article-title: Site-specific DNA-programmed growth of fluorescent and functional silver nanoclusters publication-title: Chem. Eur. J. – volume: 48 start-page: 1081 year: 2009 ident: key 20180801053046_gks387-B26 article-title: Discrete self-assembly of iron ions inside triple-stranded artifical DNA publication-title: Angew. Chem., Int. Ed. – volume: 131 start-page: 3826 year: 2009 ident: key 20180801053046_gks387-B30 article-title: Silver ion unusally stabilizes the structure of a paralled-motif DNA triplex publication-title: J. Am. Chem. Soc. – volume: 243 start-page: 1571 year: 1989 ident: key 20180801053046_gks387-B27 article-title: Topology and formation of triple-stranded H-DNA publication-title: Science – volume: 440 start-page: 297 year: 2006 ident: key 20180801053046_gks387-B38 article-title: Folding DNA to create nanoscale shapes and pattens publication-title: Nature – volume: 10 start-page: 3106 year: 2010 ident: key 20180801053046_gks387-B10 article-title: A DNA-silver nanocluster probe that fluoresces upon hybridization publication-title: Nano Lett. – volume: 81 start-page: 1580 year: 2001 ident: key 20180801053046_gks387-B31 article-title: Silver(I) complexes with DNA and RNA studied by fourier tranform infrared spectroscopy and capillary electrophoresis publication-title: Biophys. J. – volume: 100 start-page: 3043 year: 2003 ident: key 20180801053046_gks387-B1 article-title: Discrete two-terminal single nanocluster quantum optoelectronic logic operations at room temperature publication-title: Proc. Natl Acad. Sci. USA – volume: 5 start-page: 719 year: 2005 ident: key 20180801053046_gks387-B42 article-title: Periodic DNA nanotemplates synthesized by rolling circle amplification publication-title: Nano Lett. – volume: 124 start-page: 13982 year: 2002 ident: key 20180801053046_gks387-B6 article-title: Individual water-soluble dendrimer-encapsulated silver nanodots fluorescence publication-title: J. Am. Chem. Soc. – volume: 297 start-page: 72 year: 2002 ident: key 20180801053046_gks387-B40 article-title: Sequence-specific molecular lithography on single DNA molecules publication-title: Sceince – volume: 83 start-page: 2883 year: 2011 ident: key 20180801053046_gks387-B5 article-title: Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor publication-title: Anal. Chem. – volume: 20 start-page: 279 year: 2008 ident: key 20180801053046_gks387-B14 article-title: Sequence-dependent fluorescent of DNA-hosted silver nanoclusters publication-title: Adv. Mater. – volume: 49 start-page: 2700 year: 2010 ident: key 20180801053046_gks387-B37 article-title: DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures publication-title: Angew. Chem. Int. Ed. – volume: 22 start-page: 1078 year: 2010 ident: key 20180801053046_gks387-B20 article-title: Water-soluble fluorescent silver nanoclusters publication-title: Adv. Mater. – volume: 1 start-page: 122 year: 2009 ident: key 20180801053046_gks387-B21 article-title: Probing differential Ag+-nucleobase interactions with isothermal titration calorimetry (ITC): towards patterned DNA metallization publication-title: Nanoscale – volume: 47 start-page: 5157 year: 2008 ident: key 20180801053046_gks387-B43 article-title: DNA-tile-directed self-assembly of quantumm dots into two-dimensional nannopatterns publication-title: Angew. Chem., Int. Ed. – volume: 37 start-page: 17714 year: 1998 ident: key 20180801053046_gks387-B23 article-title: Dual recognition of double-stranded DNA by 2’-aminoethoxy-modifiedoligonucleotides: the solution structures of an intramolecular triplex obtained by NMR spectroscopy publication-title: Biochemistry – volume: 7 start-page: 3832 year: 2007 ident: key 20180801053046_gks387-B25 article-title: Triplex addressability as a basis for functional DNA nanostructures publication-title: Nano Lett. – volume: 46 start-page: 2028 year: 2007 ident: key 20180801053046_gks387-B4 article-title: In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters publication-title: Angew. Chem., Int. Ed. – volume: 33 start-page: 27 year: 2000 ident: key 20180801053046_gks387-B3 article-title: Monlayer-protected cluster molecules publication-title: Acc. Chem. Res. – volume: 87 start-page: 9436 year: 1990 ident: key 20180801053046_gks387-B28 article-title: Thermodynamic characterization of the stability and the melting behavior of a DNA triplex-a spectroscopic and calorimetric study publication-title: Proc. Natl Acad. Sci. USA – volume: 17 start-page: 2336 year: 2005 ident: key 20180801053046_gks387-B36 article-title: Photogeneration of fluorescent silver nanoclusters in polymer microgels publication-title: Adv. Mater. – volume: 45 start-page: 2409 year: 2006 ident: key 20180801053046_gks387-B41 article-title: DNA polymerizattion on gold nanoparticles through rolling circle amplification: towards novel scaffolds for three-dimensional periodic nanoassemblies publication-title: Angew. Chem. Int. Ed. – volume: 128 start-page: 1398 year: 2006 ident: key 20180801053046_gks387-B18 article-title: Directed DNA metallization publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 3280 year: 2010 ident: key 20180801053046_gks387-B15 article-title: A complementary palette of fluorescent silver nanoclusters publication-title: Chem. Commun. – volume: 43 start-page: 5335 year: 2004 ident: key 20180801053046_gks387-B24 article-title: A DNA nanomachine based on a duplex-triplex transition publication-title: Angew. Chem., Int. Ed. – volume: 48 start-page: 3471 year: 2005 ident: key 20180801053046_gks387-B32 article-title: Oxazine 170 induces DNA:RNA:DNA triplex formation publication-title: J. Med. Chem. – volume: 38 start-page: 329 year: 2009 ident: key 20180801053046_gks387-B39 article-title: DNA-templated nanofabrication publication-title: Chem. Soc. Rev. – volume: 35 start-page: 1162 year: 2006 ident: key 20180801053046_gks387-B2 article-title: Synthesis, structure and properties of metal nanoclusters publication-title: Chem. Soc. Rev. – volume: 112 start-page: 18776 year: 2008 ident: key 20180801053046_gks387-B11 article-title: Base-directed formation of fluorescent silver clusters publication-title: J. Phys. Chem. C – volume: 46 start-page: 1257 year: 2010 ident: key 20180801053046_gks387-B22 article-title: Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions publication-title: Chem. Commun. – volume: 49 start-page: 5665 year: 2010 ident: key 20180801053046_gks387-B44 article-title: Selective dsDNA-templated formation of copper nanoparticles in solution publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 3209 year: 2010 ident: key 20180801053046_gks387-B7 article-title: Sonochemical synthesis of highly fluorescent Ag nanoclusters publication-title: ACS Nano – volume: 133 start-page: 11837 year: 2011 ident: key 20180801053046_gks387-B12 article-title: Ag K-edge EXAFS analysis of DNA-templated fluorescent silver nanoclusters: insight into the structural origins of emission tuning by DNA sequence variations publication-title: J. Am. Chem. Soc. – volume: 480 start-page: 9 year: 2009 ident: key 20180801053046_gks387-B33 article-title: Spectral and electrochemical detection of protonated triplex formation by a small-molecule anticancer agent publication-title: Chem. Phys. Lett. – volume: 126 start-page: 5207 year: 2004 ident: key 20180801053046_gks387-B8 article-title: DNA-templated Ag nanocluster formation publication-title: J. Am. Chem. Soc. |
SSID | ssj0014154 |
Score | 2.369039 |
Snippet | A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e122 |
SubjectTerms | DNA - chemistry Fluorescent Dyes - chemistry Methods Online Nanostructures - chemistry Nanostructures - ultrastructure Nucleation Nucleotide sequence Salts scaffolds Silver Silver - chemistry Spectrometry, Mass, Electrospray Ionization |
Title | Toward site-specific, homogeneous and highly stable fluorescent silver nanoclusters fabrication on triplex DNA scaffolds |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22570417 https://www.proquest.com/docview/1039884880 https://www.proquest.com/docview/1093473080 https://pubmed.ncbi.nlm.nih.gov/PMC3439878 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgPMALgo2P8TEZgZBQyZbUaRI_VqPVhEZ5aaWKl8hx7LaiS1A_pHV_PXe2k6asQgOpiirXcSLfr-e7893PhHwIM55onUlPxJHvhR0ReVzwzOtIwSLJpdYSa4e_DaKLUfh13BlvgzmmumSVncqbvXUl_yNVaAO5YpXsP0i2HhQa4DvIF64gYbjeTcYm57WFG8Aelkxi2g_O2bS8KuEmhemtGBhHTuL5BsMGWCel5-tyYVmc4FbMjG4VoijlfI2kCcuWFtnCRfLMVsICY_HXrS-Dbmsphdbl3BYHVzbtACmRkfZVznLchGjEx4yNabUJOL2TzRaKF2sXqP4xVcXNtFGQ5qpFTFXaZBuXxcbxTJQT4VpdqAJzPngVqrDa1ZRocad-1Z42p5Itg1MFvaaCVYEtY76l-S0rVoFZ6f3JzyVzy_gOwfbge9ofXV6mw954eJ88aINngaox9nv1xhPYM_YcZPdWFaMtZ2cw9pkdedeGueWY_Jlf2zBYhk_IY-dp0K6FzVNyTxWH5KhbiFV5taEfqcn9NZsqh-TheXXu3xG5tqiiO6j6TBuYooApajFFLaZoA1PUYoo2MUUbmKLwcZiigClaY-oZGfV7w_MLz53P4ckwjlceOg88aAfCz7NMMRUJMC_zSItOLoKYJTlMbyy5iH2dM7DkGZeKR6HE0lQms5A9JwdFWaiXhEYwCA80V77kISiLJJGB4HkeJEkY6sw_Jp-qGU-lI6_HM1TmqU2iYClIJ7XSOSbv676_LGXL3l7vKsGlMMG4TSbMHKaYHAGPhYXtb304C2FxxD4vrLDrZ7XxYMgwgCfEOzCoOyCj--4vxWxqmN0ZuAdJnLy6w7u9Jo-2f7E35GC1WKu3YB-vshOD6BMTXfoNCeTIVg |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+site-specific%2C+homogeneous+and+highly+stable+fluorescent+silver+nanoclusters+fabrication+on+triplex+DNA+scaffolds&rft.jtitle=Nucleic+acids+research&rft.au=Feng%2C+Lingyan&rft.au=Huang%2C+Zhenzhen&rft.au=Ren%2C+Jinsong&rft.au=Qu%2C+Xiaogang&rft.date=2012-09-01&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=40&rft.issue=16&rft.spage=e122&rft_id=info:doi/10.1093%2Fnar%2Fgks387&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |