Toward site-specific, homogeneous and highly stable fluorescent silver nanoclusters fabrication on triplex DNA scaffolds

A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag(2) cluster was obtained in the predefined position of CG.C(+) site of triplex DNA. This st...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 40; no. 16; p. e122
Main Authors Feng, Lingyan, Huang, Zhenzhen, Ren, Jinsong, Qu, Xiaogang
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.09.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag(2) cluster was obtained in the predefined position of CG.C(+) site of triplex DNA. This strategy was also explored for controlled alignment of AgNCs on the DNA nanoscaffold. To the best of our knowledge, this was the first example to simultaneously answer the challenges of excellent site-specific nucleation and growth, homogeneity and stability against salt of DNA-templated AgNCs.
AbstractList A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag sub(2) cluster was obtained in the predefined position of CG.C super(+) site of triplex DNA. This strategy was also explored for controlled alignment of AgNCs on the DNA nanoscaffold. To the best of our knowledge, this was the first example to simultaneously answer the challenges of excellent site-specific nucleation and growth, homogeneity and stability against salt of DNA-templated AgNCs.
A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag(2) cluster was obtained in the predefined position of CG.C(+) site of triplex DNA. This strategy was also explored for controlled alignment of AgNCs on the DNA nanoscaffold. To the best of our knowledge, this was the first example to simultaneously answer the challenges of excellent site-specific nucleation and growth, homogeneity and stability against salt of DNA-templated AgNCs.A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag(2) cluster was obtained in the predefined position of CG.C(+) site of triplex DNA. This strategy was also explored for controlled alignment of AgNCs on the DNA nanoscaffold. To the best of our knowledge, this was the first example to simultaneously answer the challenges of excellent site-specific nucleation and growth, homogeneity and stability against salt of DNA-templated AgNCs.
A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag 2 cluster was obtained in the predefined position of CG.C + site of triplex DNA. This strategy was also explored for controlled alignment of AgNCs on the DNA nanoscaffold. To the best of our knowledge, this was the first example to simultaneously answer the challenges of excellent site-specific nucleation and growth, homogeneity and stability against salt of DNA-templated AgNCs.
A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag(2) cluster was obtained in the predefined position of CG.C(+) site of triplex DNA. This strategy was also explored for controlled alignment of AgNCs on the DNA nanoscaffold. To the best of our knowledge, this was the first example to simultaneously answer the challenges of excellent site-specific nucleation and growth, homogeneity and stability against salt of DNA-templated AgNCs.
Author Qu, Xiaogang
Ren, Jinsong
Feng, Lingyan
Huang, Zhenzhen
AuthorAffiliation 1 Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2 Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China
AuthorAffiliation_xml – name: 1 Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2 Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China
Author_xml – sequence: 1
  givenname: Lingyan
  surname: Feng
  fullname: Feng, Lingyan
  organization: Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China, Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China
– sequence: 2
  givenname: Zhenzhen
  surname: Huang
  fullname: Huang, Zhenzhen
  organization: Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China, Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China
– sequence: 3
  givenname: Jinsong
  surname: Ren
  fullname: Ren, Jinsong
  organization: Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China, Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China
– sequence: 4
  givenname: Xiaogang
  surname: Qu
  fullname: Qu, Xiaogang
  organization: Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China, Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 and 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22570417$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vVCEUxYlpY6fVjR_AsDTGZ-HBe8DGpGltNWl0U9eEx58ZlIEReLX99qUztdHGhQnJXfC75557zyHYiylaAF5h9B4jQY6jysfLH4Vw9gwsMBn7joqx3wMLRNDQYUT5ATgs5TtCmOKBPgcHfT8wRDFbgJur9EtlA4uvtisbq73z-h1cpXVa2mjTXKCKBq78chVuYalqCha6MKdsi7axtsZwbTOMKiYd5lJtLtCpKXutqk8Rtlez3wR7A8--nMCilXMpmPIC7DsVin35UI_At_OPV6efusuvF59PTy47TRmrHSaCCdxjhcw0WWJHxbEwo1ODUZgRblhPmBaKIWeIGBqurRipxogwoidKjsCHne5mntbW3HvOKshN9muVb2VSXv79E_1KLtO1JJQIzngTePMgkNPP2ZYq176tHoLankfeR0AZQRz9B9okOeVb9PWfth79_E6mAW93gM6plGzdI4LRdqZssctd7A1GT2Dt6_b-bSUf_tVyB4r-tH8
CitedBy_id crossref_primary_10_1016_j_nantod_2014_02_010
crossref_primary_10_1039_C6NR00145A
crossref_primary_10_1016_j_saa_2023_122752
crossref_primary_10_1016_j_bios_2019_02_019
crossref_primary_10_1016_j_trac_2013_12_014
crossref_primary_10_1016_j_ab_2019_113365
crossref_primary_10_1039_C3AN02150E
crossref_primary_10_1039_D4TC05228E
crossref_primary_10_1016_j_aca_2014_08_032
crossref_primary_10_1039_c3nr01601c
crossref_primary_10_1016_j_jphotobiol_2020_111886
crossref_primary_10_1093_nar_gkx1230
crossref_primary_10_1016_j_nantod_2020_101021
crossref_primary_10_1080_07391102_2022_2159878
crossref_primary_10_3390_molecules24224189
crossref_primary_10_1016_j_snb_2014_08_079
crossref_primary_10_1039_c4ay00378k
crossref_primary_10_1039_c3ay40118a
crossref_primary_10_1016_j_saa_2014_08_025
crossref_primary_10_1039_C5RA22489F
crossref_primary_10_1002_adma_201304437
crossref_primary_10_1021_jp3091792
crossref_primary_10_1039_c3cc46025h
crossref_primary_10_1021_acs_jpcb_2c05611
crossref_primary_10_1016_j_biomaterials_2014_06_034
crossref_primary_10_3389_fchem_2020_601621
crossref_primary_10_1021_am400668q
crossref_primary_10_1007_s11051_020_4781_1
crossref_primary_10_1016_j_ccr_2021_214381
crossref_primary_10_1021_acssuschemeng_7b03568
crossref_primary_10_1016_j_talanta_2017_12_049
crossref_primary_10_1021_acs_jafc_3c09621
crossref_primary_10_1016_j_bios_2012_12_042
crossref_primary_10_1016_j_mattod_2016_09_012
crossref_primary_10_1007_s11426_017_9124_0
crossref_primary_10_1021_acs_chemmater_6b04150
crossref_primary_10_1016_j_aca_2024_343072
crossref_primary_10_1016_j_copbio_2013_10_013
crossref_primary_10_2139_ssrn_4201068
crossref_primary_10_1021_acs_inorgchem_8b00442
crossref_primary_10_1016_j_ccr_2023_215247
crossref_primary_10_1039_C5CP03175C
crossref_primary_10_1039_C6NR05872H
crossref_primary_10_1080_26395940_2024_2329660
crossref_primary_10_1016_j_bios_2017_07_016
crossref_primary_10_3390_chemosensors12120271
crossref_primary_10_1021_ac503741x
crossref_primary_10_1007_s12274_017_1844_4
crossref_primary_10_1093_nar_gkt575
crossref_primary_10_1039_C5CS00607D
crossref_primary_10_1039_C8CS00011E
crossref_primary_10_1021_ja407911b
crossref_primary_10_1039_C4CC04615C
crossref_primary_10_1002_bio_3030
crossref_primary_10_1002_asia_201600459
crossref_primary_10_1016_j_talanta_2019_120257
crossref_primary_10_1038_srep44212
crossref_primary_10_1021_la402153b
crossref_primary_10_1039_C8RA04716B
crossref_primary_10_1039_C3DT52042K
crossref_primary_10_7498_aps_70_20201430
crossref_primary_10_1039_C5AN00093A
crossref_primary_10_1246_cl_140197
crossref_primary_10_1103_PhysRevE_93_052413
crossref_primary_10_1016_j_bios_2019_111926
crossref_primary_10_1007_s00604_016_1968_3
crossref_primary_10_1016_j_snb_2018_03_047
crossref_primary_10_1016_j_talanta_2018_06_051
crossref_primary_10_3390_life12050686
crossref_primary_10_1016_j_talanta_2014_09_031
crossref_primary_10_1039_c3nr00998j
crossref_primary_10_1016_j_trac_2021_116292
crossref_primary_10_1021_acs_jpcb_9b09741
crossref_primary_10_1039_D0RA08066G
crossref_primary_10_1039_C8NR02575D
crossref_primary_10_1088_0957_4484_25_23_235501
ContentType Journal Article
Copyright The Author(s) 2012. Published by Oxford University Press. 2012
Copyright_xml – notice: The Author(s) 2012. Published by Oxford University Press. 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
DOI 10.1093/nar/gks387
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage e122
ExternalDocumentID PMC3439878
22570417
10_1093_nar_gks387
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
C1A
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SJN
SV3
TEORI
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
.55
.GJ
3O-
AAWDT
AAYJJ
ABIME
ABNGD
ABPIB
ABSMQ
ABZEO
ACFRR
ACIPB
ACPQN
ACUKT
ACVCV
ACZBC
AEHUL
AEKPW
AFSHK
AGKRT
AGMDO
AGQPQ
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BEYMZ
CGR
COF
CUY
CVF
CXTWN
D0S
DFGAJ
ECM
EIF
ELUNK
FEDTE
HVGLF
H~9
MBTAY
MVM
NPM
NTWIH
O~Y
PB-
QBD
RNI
RZF
RZO
TCN
UHB
X7M
XSW
ZXP
7X8
7TM
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c477t-13979121a0dbbe3e6a819d6fa5da1738d7237c9a70fd395139ce964c10373cb43
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 14:11:33 EDT 2025
Fri Jul 11 16:46:56 EDT 2025
Thu Jul 10 17:49:37 EDT 2025
Mon Jul 21 06:03:42 EDT 2025
Tue Jul 01 01:41:12 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License http://creativecommons.org/licenses/by-nc/3.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-13979121a0dbbe3e6a819d6fa5da1738d7237c9a70fd395139ce964c10373cb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.
OpenAccessLink http://dx.doi.org/10.1093/nar/gks387
PMID 22570417
PQID 1039884880
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3439878
proquest_miscellaneous_1093473080
proquest_miscellaneous_1039884880
pubmed_primary_22570417
crossref_primary_10_1093_nar_gks387
crossref_citationtrail_10_1093_nar_gks387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2012
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Yu ( key 20180801053046_gks387-B4) 2007; 46
Lesniak ( key 20180801053046_gks387-B34) 2005; 11
Pal ( key 20180801053046_gks387-B37) 2010; 49
Shen ( key 20180801053046_gks387-B35) 2007; 19
Xu ( key 20180801053046_gks387-B20) 2010; 22
Guo ( key 20180801053046_gks387-B5) 2011; 83
Sengupta ( key 20180801053046_gks387-B11) 2008; 112
Wirges ( key 20180801053046_gks387-B19) 2008; 48
Lan ( key 20180801053046_gks387-B22) 2010; 46
Rothemund ( key 20180801053046_gks387-B38) 2006; 440
Xu ( key 20180801053046_gks387-B7) 2010; 4
Ihara ( key 20180801053046_gks387-B30) 2009; 131
Beyer ( key 20180801053046_gks387-B42) 2005; 5
Feng ( key 20180801053046_gks387-B33) 2009; 480
Htun ( key 20180801053046_gks387-B27) 1989; 243
Song ( key 20180801053046_gks387-B32) 2005; 48
Béccrril ( key 20180801053046_gks387-B39) 2009; 38
Gwinn ( key 20180801053046_gks387-B14) 2008; 20
Yeh ( key 20180801053046_gks387-B10) 2010; 10
Richards ( key 20180801053046_gks387-B9) 2008; 130
Shukla ( key 20180801053046_gks387-B21) 2009; 1
Chen ( key 20180801053046_gks387-B24) 2004; 43
Burley ( key 20180801053046_gks387-B18) 2006; 128
Xing ( key 20180801053046_gks387-B29) 2005; 579
Templeton ( key 20180801053046_gks387-B3) 2000; 33
Petty ( key 20180801053046_gks387-B8) 2004; 126
Huang ( key 20180801053046_gks387-B13) 2011; 17
Sharma ( key 20180801053046_gks387-B15) 2010; 46
Keren ( key 20180801053046_gks387-B17) 2004; 4
Tumpane ( key 20180801053046_gks387-B25) 2007; 7
Zinchenko ( key 20180801053046_gks387-B45) 2008; 9
Blommers ( key 20180801053046_gks387-B23) 1998; 37
Rotaru ( key 20180801053046_gks387-B44) 2010; 49
Pal ( key 20180801053046_gks387-B16) 2011; 50
Keren ( key 20180801053046_gks387-B40) 2002; 297
Zhang ( key 20180801053046_gks387-B36) 2005; 17
Sharma ( key 20180801053046_gks387-B43) 2008; 47
Wilcoxon ( key 20180801053046_gks387-B2) 2006; 35
Takezawa ( key 20180801053046_gks387-B26) 2009; 48
Neidig ( key 20180801053046_gks387-B12) 2011; 133
Plum ( key 20180801053046_gks387-B28) 1990; 87
Zhao ( key 20180801053046_gks387-B41) 2006; 45
Zheng ( key 20180801053046_gks387-B6) 2002; 124
Lee ( key 20180801053046_gks387-B1) 2003; 100
Arakawa ( key 20180801053046_gks387-B31) 2001; 81
References_xml – volume: 4
  start-page: 323
  year: 2004
  ident: key 20180801053046_gks387-B17
  article-title: Patterned DNA metallization by sequence-specific localization of a reducing agent
  publication-title: Nano Lett.
– volume: 579
  start-page: 5035
  year: 2005
  ident: key 20180801053046_gks387-B29
  article-title: Molecular recognition of nucleic acids: coralyne binds strongly to poly(A)
  publication-title: FEBS Lett.
– volume: 130
  start-page: 5038
  year: 2008
  ident: key 20180801053046_gks387-B9
  article-title: Oligonucleotide-stabilized Ag nanocluster fluorophores
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1981
  year: 2008
  ident: key 20180801053046_gks387-B45
  article-title: Conformational behavior of giant DNA through binding with Ag+ and metallization
  publication-title: Biomacromolecules
– volume: 48
  start-page: 219
  year: 2008
  ident: key 20180801053046_gks387-B19
  article-title: Controlled nucleation of DNA metallization
  publication-title: Angew. Chem., Int. Ed.
– volume: 50
  start-page: 4176
  year: 2011
  ident: key 20180801053046_gks387-B16
  article-title: Site-specific synthesis and in situ immobilization of fluorescent silver nanoclusters on DNA nanoscaffolds by use of the Tollens reaction
  publication-title: Angew. Chem., Int. Ed.
– volume: 19
  start-page: 349
  year: 2007
  ident: key 20180801053046_gks387-B35
  article-title: Water-soluble fluorescent Ag nanoclusters obtained from multiarm star poly (acrylic acid) as “molecular hydrogel” templates
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2123
  year: 2005
  ident: key 20180801053046_gks387-B34
  article-title: Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection
  publication-title: Nano Lett.
– volume: 17
  start-page: 3774
  year: 2011
  ident: key 20180801053046_gks387-B13
  article-title: Site-specific DNA-programmed growth of fluorescent and functional silver nanoclusters
  publication-title: Chem. Eur. J.
– volume: 48
  start-page: 1081
  year: 2009
  ident: key 20180801053046_gks387-B26
  article-title: Discrete self-assembly of iron ions inside triple-stranded artifical DNA
  publication-title: Angew. Chem., Int. Ed.
– volume: 131
  start-page: 3826
  year: 2009
  ident: key 20180801053046_gks387-B30
  article-title: Silver ion unusally stabilizes the structure of a paralled-motif DNA triplex
  publication-title: J. Am. Chem. Soc.
– volume: 243
  start-page: 1571
  year: 1989
  ident: key 20180801053046_gks387-B27
  article-title: Topology and formation of triple-stranded H-DNA
  publication-title: Science
– volume: 440
  start-page: 297
  year: 2006
  ident: key 20180801053046_gks387-B38
  article-title: Folding DNA to create nanoscale shapes and pattens
  publication-title: Nature
– volume: 10
  start-page: 3106
  year: 2010
  ident: key 20180801053046_gks387-B10
  article-title: A DNA-silver nanocluster probe that fluoresces upon hybridization
  publication-title: Nano Lett.
– volume: 81
  start-page: 1580
  year: 2001
  ident: key 20180801053046_gks387-B31
  article-title: Silver(I) complexes with DNA and RNA studied by fourier tranform infrared spectroscopy and capillary electrophoresis
  publication-title: Biophys. J.
– volume: 100
  start-page: 3043
  year: 2003
  ident: key 20180801053046_gks387-B1
  article-title: Discrete two-terminal single nanocluster quantum optoelectronic logic operations at room temperature
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 5
  start-page: 719
  year: 2005
  ident: key 20180801053046_gks387-B42
  article-title: Periodic DNA nanotemplates synthesized by rolling circle amplification
  publication-title: Nano Lett.
– volume: 124
  start-page: 13982
  year: 2002
  ident: key 20180801053046_gks387-B6
  article-title: Individual water-soluble dendrimer-encapsulated silver nanodots fluorescence
  publication-title: J. Am. Chem. Soc.
– volume: 297
  start-page: 72
  year: 2002
  ident: key 20180801053046_gks387-B40
  article-title: Sequence-specific molecular lithography on single DNA molecules
  publication-title: Sceince
– volume: 83
  start-page: 2883
  year: 2011
  ident: key 20180801053046_gks387-B5
  article-title: Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor
  publication-title: Anal. Chem.
– volume: 20
  start-page: 279
  year: 2008
  ident: key 20180801053046_gks387-B14
  article-title: Sequence-dependent fluorescent of DNA-hosted silver nanoclusters
  publication-title: Adv. Mater.
– volume: 49
  start-page: 2700
  year: 2010
  ident: key 20180801053046_gks387-B37
  article-title: DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures
  publication-title: Angew. Chem. Int. Ed.
– volume: 22
  start-page: 1078
  year: 2010
  ident: key 20180801053046_gks387-B20
  article-title: Water-soluble fluorescent silver nanoclusters
  publication-title: Adv. Mater.
– volume: 1
  start-page: 122
  year: 2009
  ident: key 20180801053046_gks387-B21
  article-title: Probing differential Ag+-nucleobase interactions with isothermal titration calorimetry (ITC): towards patterned DNA metallization
  publication-title: Nanoscale
– volume: 47
  start-page: 5157
  year: 2008
  ident: key 20180801053046_gks387-B43
  article-title: DNA-tile-directed self-assembly of quantumm dots into two-dimensional nannopatterns
  publication-title: Angew. Chem., Int. Ed.
– volume: 37
  start-page: 17714
  year: 1998
  ident: key 20180801053046_gks387-B23
  article-title: Dual recognition of double-stranded DNA by 2’-aminoethoxy-modifiedoligonucleotides: the solution structures of an intramolecular triplex obtained by NMR spectroscopy
  publication-title: Biochemistry
– volume: 7
  start-page: 3832
  year: 2007
  ident: key 20180801053046_gks387-B25
  article-title: Triplex addressability as a basis for functional DNA nanostructures
  publication-title: Nano Lett.
– volume: 46
  start-page: 2028
  year: 2007
  ident: key 20180801053046_gks387-B4
  article-title: In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters
  publication-title: Angew. Chem., Int. Ed.
– volume: 33
  start-page: 27
  year: 2000
  ident: key 20180801053046_gks387-B3
  article-title: Monlayer-protected cluster molecules
  publication-title: Acc. Chem. Res.
– volume: 87
  start-page: 9436
  year: 1990
  ident: key 20180801053046_gks387-B28
  article-title: Thermodynamic characterization of the stability and the melting behavior of a DNA triplex-a spectroscopic and calorimetric study
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 17
  start-page: 2336
  year: 2005
  ident: key 20180801053046_gks387-B36
  article-title: Photogeneration of fluorescent silver nanoclusters in polymer microgels
  publication-title: Adv. Mater.
– volume: 45
  start-page: 2409
  year: 2006
  ident: key 20180801053046_gks387-B41
  article-title: DNA polymerizattion on gold nanoparticles through rolling circle amplification: towards novel scaffolds for three-dimensional periodic nanoassemblies
  publication-title: Angew. Chem. Int. Ed.
– volume: 128
  start-page: 1398
  year: 2006
  ident: key 20180801053046_gks387-B18
  article-title: Directed DNA metallization
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 3280
  year: 2010
  ident: key 20180801053046_gks387-B15
  article-title: A complementary palette of fluorescent silver nanoclusters
  publication-title: Chem. Commun.
– volume: 43
  start-page: 5335
  year: 2004
  ident: key 20180801053046_gks387-B24
  article-title: A DNA nanomachine based on a duplex-triplex transition
  publication-title: Angew. Chem., Int. Ed.
– volume: 48
  start-page: 3471
  year: 2005
  ident: key 20180801053046_gks387-B32
  article-title: Oxazine 170 induces DNA:RNA:DNA triplex formation
  publication-title: J. Med. Chem.
– volume: 38
  start-page: 329
  year: 2009
  ident: key 20180801053046_gks387-B39
  article-title: DNA-templated nanofabrication
  publication-title: Chem. Soc. Rev.
– volume: 35
  start-page: 1162
  year: 2006
  ident: key 20180801053046_gks387-B2
  article-title: Synthesis, structure and properties of metal nanoclusters
  publication-title: Chem. Soc. Rev.
– volume: 112
  start-page: 18776
  year: 2008
  ident: key 20180801053046_gks387-B11
  article-title: Base-directed formation of fluorescent silver clusters
  publication-title: J. Phys. Chem. C
– volume: 46
  start-page: 1257
  year: 2010
  ident: key 20180801053046_gks387-B22
  article-title: Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions
  publication-title: Chem. Commun.
– volume: 49
  start-page: 5665
  year: 2010
  ident: key 20180801053046_gks387-B44
  article-title: Selective dsDNA-templated formation of copper nanoparticles in solution
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 3209
  year: 2010
  ident: key 20180801053046_gks387-B7
  article-title: Sonochemical synthesis of highly fluorescent Ag nanoclusters
  publication-title: ACS Nano
– volume: 133
  start-page: 11837
  year: 2011
  ident: key 20180801053046_gks387-B12
  article-title: Ag K-edge EXAFS analysis of DNA-templated fluorescent silver nanoclusters: insight into the structural origins of emission tuning by DNA sequence variations
  publication-title: J. Am. Chem. Soc.
– volume: 480
  start-page: 9
  year: 2009
  ident: key 20180801053046_gks387-B33
  article-title: Spectral and electrochemical detection of protonated triplex formation by a small-molecule anticancer agent
  publication-title: Chem. Phys. Lett.
– volume: 126
  start-page: 5207
  year: 2004
  ident: key 20180801053046_gks387-B8
  article-title: DNA-templated Ag nanocluster formation
  publication-title: J. Am. Chem. Soc.
SSID ssj0014154
Score 2.369039
Snippet A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e122
SubjectTerms DNA - chemistry
Fluorescent Dyes - chemistry
Methods Online
Nanostructures - chemistry
Nanostructures - ultrastructure
Nucleation
Nucleotide sequence
Salts
scaffolds
Silver
Silver - chemistry
Spectrometry, Mass, Electrospray Ionization
Title Toward site-specific, homogeneous and highly stable fluorescent silver nanoclusters fabrication on triplex DNA scaffolds
URI https://www.ncbi.nlm.nih.gov/pubmed/22570417
https://www.proquest.com/docview/1039884880
https://www.proquest.com/docview/1093473080
https://pubmed.ncbi.nlm.nih.gov/PMC3439878
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgPMALgo2P8TEZgZBQyZbUaRI_VqPVhEZ5aaWKl8hx7LaiS1A_pHV_PXe2k6asQgOpiirXcSLfr-e7893PhHwIM55onUlPxJHvhR0ReVzwzOtIwSLJpdYSa4e_DaKLUfh13BlvgzmmumSVncqbvXUl_yNVaAO5YpXsP0i2HhQa4DvIF64gYbjeTcYm57WFG8Aelkxi2g_O2bS8KuEmhemtGBhHTuL5BsMGWCel5-tyYVmc4FbMjG4VoijlfI2kCcuWFtnCRfLMVsICY_HXrS-Dbmsphdbl3BYHVzbtACmRkfZVznLchGjEx4yNabUJOL2TzRaKF2sXqP4xVcXNtFGQ5qpFTFXaZBuXxcbxTJQT4VpdqAJzPngVqrDa1ZRocad-1Z42p5Itg1MFvaaCVYEtY76l-S0rVoFZ6f3JzyVzy_gOwfbge9ofXV6mw954eJ88aINngaox9nv1xhPYM_YcZPdWFaMtZ2cw9pkdedeGueWY_Jlf2zBYhk_IY-dp0K6FzVNyTxWH5KhbiFV5taEfqcn9NZsqh-TheXXu3xG5tqiiO6j6TBuYooApajFFLaZoA1PUYoo2MUUbmKLwcZiigClaY-oZGfV7w_MLz53P4ckwjlceOg88aAfCz7NMMRUJMC_zSItOLoKYJTlMbyy5iH2dM7DkGZeKR6HE0lQms5A9JwdFWaiXhEYwCA80V77kISiLJJGB4HkeJEkY6sw_Jp-qGU-lI6_HM1TmqU2iYClIJ7XSOSbv676_LGXL3l7vKsGlMMG4TSbMHKaYHAGPhYXtb304C2FxxD4vrLDrZ7XxYMgwgCfEOzCoOyCj--4vxWxqmN0ZuAdJnLy6w7u9Jo-2f7E35GC1WKu3YB-vshOD6BMTXfoNCeTIVg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+site-specific%2C+homogeneous+and+highly+stable+fluorescent+silver+nanoclusters+fabrication+on+triplex+DNA+scaffolds&rft.jtitle=Nucleic+acids+research&rft.au=Feng%2C+Lingyan&rft.au=Huang%2C+Zhenzhen&rft.au=Ren%2C+Jinsong&rft.au=Qu%2C+Xiaogang&rft.date=2012-09-01&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=40&rft.issue=16&rft.spage=e122&rft_id=info:doi/10.1093%2Fnar%2Fgks387&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon