Facile Synthesis of Wide-Bandgap Fluorinated Graphene Semiconductors

The bandgap opening of graphene is extremely important for the expansion of the applications of graphene‐based materials into optoelectronics and photonics. Current methods to open the bandgap of graphene have intrinsic drawbacks including small bandgap openings, the use hazardous/harsh chemical oxi...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 17; no. 32; pp. 8896 - 8903
Main Authors Chang, Haixin, Cheng, Jinsheng, Liu, Xuqing, Gao, Junfeng, Li, Mingjian, Li, Jinghong, Tao, Xiaoming, Ding, Feng, Zheng, Zijian
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.08.2011
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The bandgap opening of graphene is extremely important for the expansion of the applications of graphene‐based materials into optoelectronics and photonics. Current methods to open the bandgap of graphene have intrinsic drawbacks including small bandgap openings, the use hazardous/harsh chemical oxidations, and the requirement of expensive chemical‐vapor deposition technologies. Herein, an eco‐friendly, highly effective, low‐cost, and highly scalable synthetic approach is reported for synthesizing wide‐bandgap fluorinated graphene (F‐graphene or or fluorographene) semiconductors under ambient conditions. In this synthesis, ionic liquids are used as the only chemical to exfoliate commercially available fluorinated graphite into single and few‐layer F‐graphene. Experimental and theoretical results show that the bandgap of F‐graphene is largely dependent on the F coverage and configuration, and thereby can be tuned over a very wide range. Fluorinated graphenes: An eco‐friendly, highly effective, low‐cost, and highly scalable approach has been developed to synthesize wide‐bandgap fluorinated graphene (F‐graphene; see figure) semiconductors. Experimental and theoretical results show the F‐graphene bandgaps are largely dependent on the F coverage and configurations, and can be tuned over a very wide range.
AbstractList The bandgap opening of graphene is extremely important for the expansion of the applications of graphene-based materials into optoelectronics and photonics. Current methods to open the bandgap of graphene have intrinsic drawbacks including small bandgap openings, the use hazardous/harsh chemical oxidations, and the requirement of expensive chemical-vapor deposition technologies. Herein, an eco-friendly, highly effective, low-cost, and highly scalable synthetic approach is reported for synthesizing wide-bandgap fluorinated graphene (F-graphene or or fluorographene) semiconductors under ambient conditions. In this synthesis, ionic liquids are used as the only chemical to exfoliate commercially available fluorinated graphite into single and few-layer F-graphene. Experimental and theoretical results show that the bandgap of F-graphene is largely dependent on the F coverage and configuration, and thereby can be tuned over a very wide range.The bandgap opening of graphene is extremely important for the expansion of the applications of graphene-based materials into optoelectronics and photonics. Current methods to open the bandgap of graphene have intrinsic drawbacks including small bandgap openings, the use hazardous/harsh chemical oxidations, and the requirement of expensive chemical-vapor deposition technologies. Herein, an eco-friendly, highly effective, low-cost, and highly scalable synthetic approach is reported for synthesizing wide-bandgap fluorinated graphene (F-graphene or or fluorographene) semiconductors under ambient conditions. In this synthesis, ionic liquids are used as the only chemical to exfoliate commercially available fluorinated graphite into single and few-layer F-graphene. Experimental and theoretical results show that the bandgap of F-graphene is largely dependent on the F coverage and configuration, and thereby can be tuned over a very wide range.
The bandgap opening of graphene is extremely important for the expansion of the applications of graphene-based materials into optoelectronics and photonics. Current methods to open the bandgap of graphene have intrinsic drawbacks including small bandgap openings, the use hazardous/harsh chemical oxidations, and the requirement of expensive chemical-vapor deposition technologies. Herein, an eco-friendly, highly effective, low-cost, and highly scalable synthetic approach is reported for synthesizing wide-bandgap fluorinated graphene (F-graphene or or fluorographene) semiconductors under ambient conditions. In this synthesis, ionic liquids are used as the only chemical to exfoliate commercially available fluorinated graphite into single and few-layer F-graphene. Experimental and theoretical results show that the bandgap of F-graphene is largely dependent on the F coverage and configuration, and thereby can be tuned over a very wide range.
The bandgap opening of graphene is extremely important for the expansion of the applications of graphene‐based materials into optoelectronics and photonics. Current methods to open the bandgap of graphene have intrinsic drawbacks including small bandgap openings, the use hazardous/harsh chemical oxidations, and the requirement of expensive chemical‐vapor deposition technologies. Herein, an eco‐friendly, highly effective, low‐cost, and highly scalable synthetic approach is reported for synthesizing wide‐bandgap fluorinated graphene (F‐graphene or or fluorographene) semiconductors under ambient conditions. In this synthesis, ionic liquids are used as the only chemical to exfoliate commercially available fluorinated graphite into single and few‐layer F‐graphene. Experimental and theoretical results show that the bandgap of F‐graphene is largely dependent on the F coverage and configuration, and thereby can be tuned over a very wide range. Fluorinated graphenes: An eco‐friendly, highly effective, low‐cost, and highly scalable approach has been developed to synthesize wide‐bandgap fluorinated graphene (F‐graphene; see figure) semiconductors. Experimental and theoretical results show the F‐graphene bandgaps are largely dependent on the F coverage and configurations, and can be tuned over a very wide range.
Author Li, Mingjian
Chang, Haixin
Tao, Xiaoming
Li, Jinghong
Cheng, Jinsheng
Ding, Feng
Zheng, Zijian
Liu, Xuqing
Gao, Junfeng
Author_xml – sequence: 1
  givenname: Haixin
  surname: Chang
  fullname: Chang, Haixin
  organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (P.R. China) and Advanced Research Centre for Fashion and Textiles, The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (P.R. China), Fax: (+852) 27731432
– sequence: 2
  givenname: Jinsheng
  surname: Cheng
  fullname: Cheng, Jinsheng
  organization: Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China), Fax: (+86) 10-62795290
– sequence: 3
  givenname: Xuqing
  surname: Liu
  fullname: Liu, Xuqing
  organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (P.R. China) and Advanced Research Centre for Fashion and Textiles, The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (P.R. China), Fax: (+852) 27731432
– sequence: 4
  givenname: Junfeng
  surname: Gao
  fullname: Gao, Junfeng
  organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (P.R. China) and Advanced Research Centre for Fashion and Textiles, The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (P.R. China), Fax: (+852) 27731432
– sequence: 5
  givenname: Mingjian
  surname: Li
  fullname: Li, Mingjian
  organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (P.R. China) and Advanced Research Centre for Fashion and Textiles, The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (P.R. China), Fax: (+852) 27731432
– sequence: 6
  givenname: Jinghong
  surname: Li
  fullname: Li, Jinghong
  email: jhli@mail.tsinghua.edu.cn
  organization: Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China), Fax: (+86) 10-62795290
– sequence: 7
  givenname: Xiaoming
  surname: Tao
  fullname: Tao, Xiaoming
  organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (P.R. China) and Advanced Research Centre for Fashion and Textiles, The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (P.R. China), Fax: (+852) 27731432
– sequence: 8
  givenname: Feng
  surname: Ding
  fullname: Ding, Feng
  email: feng.ding@inet.polyu.edu.hk
  organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (P.R. China) and Advanced Research Centre for Fashion and Textiles, The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (P.R. China), Fax: (+852) 27731432
– sequence: 9
  givenname: Zijian
  surname: Zheng
  fullname: Zheng, Zijian
  email: tczzheng@inet.polyu.edu.hk
  organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (P.R. China) and Advanced Research Centre for Fashion and Textiles, The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (P.R. China), Fax: (+852) 27731432
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21714019$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNOPa4_VSly4bPDH2l4fIW0SUKESperR8nonjdtdO9i7gvx7XKVEqBLiZI38PDOjeY_QgQ8eEDojeEowpu_tGvopxSQXQqlXaEI4JSWTgh-gCVaVLAVn6hAdpfSAMVaCsTfokBJJKkzUBF3MjXUdFDdbP6whuVSEVXHnWig_Gt_em00x78YQnTcDtMUims0afMahdzb4drRDiOkEvV6ZLsHp83uMbueX32fL8up68Wn24aq0lZSqrPPCnAFWeGUttVVDaM0JJ1gI3pJG1awxQmHV1vlXcQqmEQykUlWtGlxLdoze7fpuYvgxQhp075KFrjMewpg0wYpllrE6o29foA9hjD5vp4kUQpB8Apqp82dqbHpo9Sa63sSt_nOfDEx3gI0hpQirPUKwfgpAPwWg9wFkoXohWDeYwQU_ROO6f2tqp_3MYWz_M0TPlpdf_nbLnevSAL_2romPWkgmub77utDLi5tvFNPPes5-A_LJpos
CODEN CEUJED
CitedBy_id crossref_primary_10_1016_j_mseb_2021_115163
crossref_primary_10_1039_C6CP06164H
crossref_primary_10_1039_c3cp53383b
crossref_primary_10_1039_C4CS00141A
crossref_primary_10_7567_JJAP_52_06GD11
crossref_primary_10_1016_j_cej_2018_12_044
crossref_primary_10_1039_c2ra21871b
crossref_primary_10_1016_j_mtcomm_2022_104130
crossref_primary_10_1016_j_apsusc_2020_146071
crossref_primary_10_1016_j_diamond_2023_109760
crossref_primary_10_1021_nn500508c
crossref_primary_10_1007_s00339_018_1999_1
crossref_primary_10_1016_j_carbon_2018_05_005
crossref_primary_10_1117_1_OE_62_9_097102
crossref_primary_10_1007_s10854_019_01839_3
crossref_primary_10_1016_j_colsurfa_2019_123707
crossref_primary_10_1039_C8CS00291F
crossref_primary_10_1557_jmr_2017_135
crossref_primary_10_1016_j_mattod_2013_01_021
crossref_primary_10_1002_aenm_202201344
crossref_primary_10_1016_j_seppur_2018_08_077
crossref_primary_10_1021_nn4023679
crossref_primary_10_1016_j_matlet_2016_02_042
crossref_primary_10_1134_S0022476620040046
crossref_primary_10_1016_j_jscs_2018_10_005
crossref_primary_10_1002_adfm_201202460
crossref_primary_10_1007_s11164_016_2847_6
crossref_primary_10_1039_C4TA01183J
crossref_primary_10_1016_j_carbon_2014_10_088
crossref_primary_10_1016_j_carbon_2014_10_008
crossref_primary_10_3390_c7010020
crossref_primary_10_1039_c3ra43578d
crossref_primary_10_1039_C6RA21083J
crossref_primary_10_1016_j_carbon_2013_06_066
crossref_primary_10_1021_am405046u
crossref_primary_10_1002_pi_5975
crossref_primary_10_1016_j_carbon_2014_05_062
crossref_primary_10_1088_1361_6528_aa5c79
crossref_primary_10_1002_adma_201707600
crossref_primary_10_1177_22808000211037487
crossref_primary_10_2139_ssrn_4110013
crossref_primary_10_1007_s10876_014_0834_x
crossref_primary_10_1016_j_jpcs_2023_111675
crossref_primary_10_3390_ma16113929
crossref_primary_10_1016_j_susc_2014_12_013
crossref_primary_10_1021_acsmacrolett_6b00732
crossref_primary_10_1016_j_molliq_2018_07_054
crossref_primary_10_1039_C6NR08148G
crossref_primary_10_1038_s41598_017_18170_8
crossref_primary_10_1557_mrs_2012_178
crossref_primary_10_1039_c3ra22029j
crossref_primary_10_1016_j_mseb_2019_06_005
crossref_primary_10_1016_j_cej_2025_160505
crossref_primary_10_1039_C3NR04609E
crossref_primary_10_1016_j_diamond_2021_108342
crossref_primary_10_1039_C9QM00517J
crossref_primary_10_1021_acsami_5b10579
crossref_primary_10_1002_admt_202000744
crossref_primary_10_1007_s10934_020_00907_y
crossref_primary_10_1021_acs_jpcc_7b03949
crossref_primary_10_1021_acs_nanolett_9b02178
crossref_primary_10_1021_acs_jpcc_0c09957
crossref_primary_10_1002_adfm_201102305
crossref_primary_10_1016_j_carbon_2012_07_026
crossref_primary_10_1016_j_porgcoat_2020_105800
crossref_primary_10_1063_1_4793997
crossref_primary_10_1016_j_micromeso_2020_110127
crossref_primary_10_1016_j_nanoen_2015_12_016
crossref_primary_10_7209_tanso_2015_11
crossref_primary_10_1002_advs_202003864
crossref_primary_10_1016_j_porgcoat_2019_105481
crossref_primary_10_1016_j_compscitech_2019_107960
crossref_primary_10_1007_s00339_018_1906_9
crossref_primary_10_1007_s11434_012_5121_3
crossref_primary_10_1039_D3RA07072G
crossref_primary_10_1103_PhysRevB_87_115431
crossref_primary_10_1039_c3nr33218g
crossref_primary_10_1039_C6NR00353B
crossref_primary_10_1016_j_apmt_2017_05_004
crossref_primary_10_1016_j_porgcoat_2022_107047
crossref_primary_10_1039_C4TA00847B
crossref_primary_10_1016_j_corsci_2015_10_039
crossref_primary_10_1140_epjd_e2013_30538_3
crossref_primary_10_1039_c2ra20585h
crossref_primary_10_1039_C7DT04565D
crossref_primary_10_1016_j_jclepro_2018_08_271
crossref_primary_10_1039_C7CS00215G
crossref_primary_10_1002_cplu_201200012
crossref_primary_10_1002_slct_201803871
crossref_primary_10_1021_acsami_5b04319
crossref_primary_10_1039_c3ee42518e
crossref_primary_10_1038_s41598_020_74618_4
crossref_primary_10_1080_26941112_2020_1869475
crossref_primary_10_1186_s40580_017_0107_0
crossref_primary_10_1002_slct_201902114
crossref_primary_10_1016_S1872_2067_24_60156_7
crossref_primary_10_1002_adma_202101665
crossref_primary_10_1039_c3cc46809g
crossref_primary_10_1016_j_jtice_2018_08_034
crossref_primary_10_1016_j_cej_2020_125104
crossref_primary_10_1021_nn4024027
crossref_primary_10_1039_c2jm32294c
crossref_primary_10_1039_c3nr02173d
crossref_primary_10_1002_cplu_201300124
crossref_primary_10_1016_j_porgcoat_2021_106321
crossref_primary_10_1039_C4RA10313K
crossref_primary_10_1039_C3RA45183F
crossref_primary_10_1007_s11051_016_3503_1
crossref_primary_10_1039_c3ta11710c
crossref_primary_10_1002_asia_201300401
crossref_primary_10_3390_cryst8040171
crossref_primary_10_1002_advs_201500413
crossref_primary_10_1002_smll_202005640
crossref_primary_10_1016_j_electacta_2013_11_040
crossref_primary_10_1002_smtd_202401591
crossref_primary_10_1039_c2tc00570k
Cites_doi 10.1002/ange.201000270
10.1103/PhysRevLett.51.1888
10.1002/ange.200901479
10.1021/ac9025384
10.1038/nnano.2009.292
10.1038/nmat2003
10.1007/s11249-006-9167-8
10.1103/PhysRevB.32.3883
10.1021/nl903278w
10.1002/adma.201002229
10.1126/science.1075035
10.1038/nature08105
10.1002/smll.201001555
10.1021/nn1025274
10.1016/j.elecom.2010.01.025
10.1002/adfm.201000900
10.1016/j.carbon.2007.02.034
10.1038/nnano.2010.8
10.1073/pnas.0905193106
10.1016/S0022-1139(01)00422-5
10.1038/nnano.2008.215
10.1103/PhysRevLett.77.3865
10.1021/nl072838r
10.1021/nl101437p
10.1002/anie.200901479
10.1002/anie.201000270
10.1038/nature05180
10.1103/PhysRevB.45.6883
10.1002/smll.200901968
10.1126/science.1150878
10.1002/adfm.200700797
10.1039/c0cc00799d
10.1021/nn900546b
10.1021/nn901221k
10.1103/PhysRevLett.97.216803
10.1007/s11249-008-9364-8
10.1039/B914763B
10.1039/C0NR00588F
10.1021/ja103169v
10.1103/PhysRevLett.96.246401
10.1103/PhysRevB.50.17953
10.1002/smll.201001401
10.1016/j.orgel.2008.01.002
10.1126/science.1158877
10.1103/PhysRevB.81.205435
10.1016/j.solmat.2007.05.005
10.1103/PhysRevB.59.1758
10.1038/nature07919
10.1103/PhysRevB.82.073403
10.1016/S0022-1139(02)00323-8
10.1038/nnano.2009.177
10.1103/PhysRevB.54.11169
10.1126/science.1167130
10.1002/chem.200900596
ContentType Journal Article
Copyright Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201100699
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 8903
ExternalDocumentID 3957762031
21714019
10_1002_chem_201100699
CHEM201100699
ark_67375_WNG_HDSR202J_F
Genre article
Journal Article
GrantInformation_xml – fundername: The Hong Kong Polytechnic University
  funderid: A‐PJ49; A‐PK92
– fundername: National Basic Research Program of China
  funderid: 2011CB935704
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
.GJ
186
6TJ
9M8
AAYXX
ABDBF
ABEML
ACSCC
ACUHS
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
BZBRT
CITATION
EBD
H~9
MVM
PALCI
RIWAO
RJQFR
SAMSI
UQL
VH1
Y6R
ZGI
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4779-800253e090fcc2c4b12851510665d1b983ba6909d8c2c952eab63e799489b0873
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Thu Jul 10 23:27:57 EDT 2025
Sun Jul 13 05:06:21 EDT 2025
Mon Jul 21 05:33:09 EDT 2025
Tue Jul 01 03:34:16 EDT 2025
Thu Apr 24 23:12:29 EDT 2025
Wed Jan 22 16:26:10 EST 2025
Wed Oct 30 10:00:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4779-800253e090fcc2c4b12851510665d1b983ba6909d8c2c952eab63e799489b0873
Notes The Hong Kong Polytechnic University - No. A-PJ49; No. A-PK92
National Basic Research Program of China - No. 2011CB935704
istex:C54ECA5B407EB8DA2E3860FA18729B27062BBDD2
ark:/67375/WNG-HDSR202J-F
ArticleID:CHEM201100699
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 21714019
PQID 1766612172
PQPubID 986340
PageCount 8
ParticipantIDs proquest_miscellaneous_1093489338
proquest_journals_1766612172
pubmed_primary_21714019
crossref_primary_10_1002_chem_201100699
crossref_citationtrail_10_1002_chem_201100699
wiley_primary_10_1002_chem_201100699_CHEM201100699
istex_primary_ark_67375_WNG_HDSR202J_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 1, 2011
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: August 1, 2011
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References Z. Y. Yin, S. X. Wu, X. Z. Zhou, X. Huang, Q. C. Zhang, F. Boey, H. Zhang, Small 2010, 6, 307
Angew. Chem. 2010, 122, 4707.
L. J. Sham, M. Schlüter, Phys. Rev. B 1985, 32, 3883.
S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H. Lee, F. Guinea, A. H. C. Neto, A. Lanzara, Nat. Mater. 2007, 6, 770
Angew. Chem. Int. Ed. 2010, 49, 4603
N. Liu, F. Luo, H. X. Wu, Y. H. Liu, C. Zhang, J. Chen, Adv. Funct. Mater. 2008, 18, 1518
A. M. Rao, A. W. P. Fung, S. L. Vittorio, M. S. Dresselhaus, G. Dresselhaus, M. Endo, K. Oshida, T. Nakajima, Phys. Rev. B 1992, 45, 6883.
S.-H. Cheng, K. Zou, H. R. Gutierrez, A. Gupta, N. Shen, P. C. Eklund, J. O. Sofo, J. Zhu, F. Okino, Phys. Rev. B 2010, 81, 205435
R. Zboril, F. Karlicky, A. B. Bourlinos, T. A. Steriotis, A. K. Stubos, V. Georgakilas, K. Safarova, D. Jancik, C. Trapalis, M. Otyepka, Small 2010, 6, 2885.
R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva. A. N. Grigorenko, K. S. Novoselov, A. K. Geim, Small 2010, 6, 2877.
L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 2009, 458, 877
Angew. Chem. Int. Ed. 2009, 48, 4785
L. Y. Zhu, J. L. Wang, T. T. Zhang, L. Ma, C. W. Lim, F. Ding, X. C. Zeng, Nano Lett. 2010, 10, 494.
Graphite Fluorides (Eds.: N. Watanabe, T. Nakajima, H. Touhara), Elsevier, New York, 1988
H. X. Chang, L. Tang, Y. Wang, J. H. Jiang, J. Li, Anal. Chem. 2010, 82, 2341
L. J. Sham, M. Schlüter, Phys. Rev. Lett. 1983, 51, 1888
J. W. Bai, X. Zhong, S. Jiang, Y. Huang, X. F. Duan, Nat. Nanotechnol. 2010, 5, 190
A. B. Murphy, Solar Energy Mater. Solar Cells 2007, 91, 1326
S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
Fluorine-Carbon and Fluoride Carbon Materials (Ed.: T. Nakajima), Marcel Dekker, New York, 1995
H. X. Chang, X. J. Lv, H. Zhang, J. H. Li, Electrochem. Commun. 2010, 12, 483
Y. W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 2006, 97, 216803
M. H. Yao, Y. M. Liang, Y. Q. Xia, F. Zhou, X. Q. Liu, Tribol. Lett. 2008, 32, 73.
C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, G. N. Chen, Angew. Chem. 2009, 121, 4879
V. Gupta, T. Nakajima, Y. Ohzawa, B. Zemva, J. Fluorine Chem. 2003, 120, 143
X. S. Zhou, T. B. Wu, K. L. Ding, B. J. Hu, M. Q. Hou, B. X. Han, Chem. Commun. 2010, 46, 386
X. Wang, P. F. Fulvio, G. A. Baker, G. M. Veith, R. R. Unocic, S. M. Mahurin, M. Chi, S. Dai, Chem. Commun. 2010, 46, 4487
P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Chem. Eur. J. 2009, 15, 6116
X. Wang, L. Zhi, K. Müllen, Nano Lett. 2008, 8, 323.
F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, Nat. Nanotechnol. 2009, 4, 839
V. Gupta, T. Nakajima, B. Zemva, J. Fluorine Chem. 2001, 110, 145
P. A. Schultz, Phys. Rev. Lett. 2006, 96, 246401
Z. H. Tang, S. L. Shen, J. Zhuang, X. Wang, Angew. Chem. 2010, 122, 4707
Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun′ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nanotechnol. 2008, 3, 563.
S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Science 2002, 297, 2243.
H. X. Chang, Z. H. Sun, Q. H. Yuan, F. Ding, X. M. Tao, F. Yan, Z. J. Zheng, Adv. Mater. 2010, 22, 4872
K.-J. Jeon, Z. Lee, E. Pollak, L. Moreschini, A. Bostwick, C.-M. Park, R. Mendelsberg, V. Radmilovic, R. Kostecki, T. J. Richardson, E. Rotenberg, ACS Nano 2011, 5, 1042
G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758
Y. Wang, Z. H. Li, D. H. Hu, C. T. Lin, J. H. Li, Y. H. Lin, J. Am. Chem. Soc. 2010, 132, 9274
H. X. Chang, G. F. Wang, A. Yang, X. M. Tao, X. Q. Liu, Y. D. Shen, Z. J. Zheng, Adv. Funct. Mater. 2010, 20, 2893
J. Y. Huang, F. Ding, B. I. Yakobson, P. Lu, L. Qi, J. Li, Proc. Natl. Acad. Sci. USA 2009, 106, 10103
J. L. Xia, F. Chen, J. H. Li, N. Tao, Nat. Nanotechnol. 2009, 4, 505
Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang, Nature 2009, 459, 820
G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865
J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, E. S. Snow, Nano Lett. 2010, 10, 3001.
F. Withers, M. Dubois, A. K. Savchenko, Phys. Rev. B 2010, 82, 073403
G. Q. Yu, S. Q. Yan, F. Zhou, X. Q. Liu, W. M. Liu, Y. M. Liang, Tribol. Lett. 2006, 25, 197
X. L. Li, X. R. Wang, L. Zhang, S. W. Lee, H. J. Dai, Science 2008, 319, 1229
A. K. Geim, Science 2009, 324, 1530
T. Mori, Y. Kikuzawa, H. Takeuchi, Org. Electron. 2008, 9, 328.
H. X. Chang, Z. H. Sun, K. Y. F. Ho, X. M. Tao, F. Yan, W. M. Kwok, Z. J. Zheng, Nanoscale 2011, 3, 258
H. Zhang, X. Lv, Y. Li, Y. Wang, J. H. Li, ACS Nano 2010, 4, 380
J. Lu, J.-X. Yang, J. Wang, A. Lim, S. Wang, K. P. Loh, ACS Nano 2009, 3, 2367
Y.-W. Son, M. L. Cohen, S. G. Louie, Nature 2006, 444, 347.
D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, Science 2009, 323, 610.
2010; 12
2010; 10
2006; 96
2006; 97
2002; 297
2008; 18
2008; 9
2007; 91
1983; 51
2008; 8
1995
2008; 32
2008; 3
2009; 459
2010; 81
2011; 3
2011; 5
1996; 54
2009 2009; 121 48
2010; 82
2009; 458
1996; 77
2010; 22
2010 2010 2010; 122 49 122
2001; 110
2010; 20
2010; 46
2006; 25
1999; 59
2008; 319
2010; 132
2007; 6
2009; 4
2009; 3
2010; 5
1994; 50
2010; 4
2007; 45
1992; 45
1985; 32
2009; 323
2009; 324
2009; 15
2010; 6
2003; 120
2006; 444
2009; 106
1988
e_1_2_6_51_2
e_1_2_6_30_2
e_1_2_6_19_2
(e_1_2_6_53_2) 1995
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_64_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_52_2
e_1_2_6_31_2
(e_1_2_6_50_2) 1988
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_33_4
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_33_3
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_31_3
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H. Lee, F. Guinea, A. H. C. Neto, A. Lanzara, Nat. Mater. 2007, 6, 770;
– reference: F. Withers, M. Dubois, A. K. Savchenko, Phys. Rev. B 2010, 82, 073403;
– reference: P. A. Schultz, Phys. Rev. Lett. 2006, 96, 246401;
– reference: J. Lu, J.-X. Yang, J. Wang, A. Lim, S. Wang, K. P. Loh, ACS Nano 2009, 3, 2367;
– reference: X. S. Zhou, T. B. Wu, K. L. Ding, B. J. Hu, M. Q. Hou, B. X. Han, Chem. Commun. 2010, 46, 386;
– reference: K.-J. Jeon, Z. Lee, E. Pollak, L. Moreschini, A. Bostwick, C.-M. Park, R. Mendelsberg, V. Radmilovic, R. Kostecki, T. J. Richardson, E. Rotenberg, ACS Nano 2011, 5, 1042;
– reference: L. Y. Zhu, J. L. Wang, T. T. Zhang, L. Ma, C. W. Lim, F. Ding, X. C. Zeng, Nano Lett. 2010, 10, 494.
– reference: Y. W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 2006, 97, 216803;
– reference: C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, G. N. Chen, Angew. Chem. 2009, 121, 4879;
– reference: Z. H. Tang, S. L. Shen, J. Zhuang, X. Wang, Angew. Chem. 2010, 122, 4707;
– reference: A. K. Geim, Science 2009, 324, 1530;
– reference: Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang, Nature 2009, 459, 820;
– reference: V. Gupta, T. Nakajima, Y. Ohzawa, B. Zemva, J. Fluorine Chem. 2003, 120, 143;
– reference: S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
– reference: G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758;
– reference: D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, Science 2009, 323, 610.
– reference: X. L. Li, X. R. Wang, L. Zhang, S. W. Lee, H. J. Dai, Science 2008, 319, 1229;
– reference: Angew. Chem. Int. Ed. 2009, 48, 4785;
– reference: Z. Y. Yin, S. X. Wu, X. Z. Zhou, X. Huang, Q. C. Zhang, F. Boey, H. Zhang, Small 2010, 6, 307;
– reference: X. Wang, L. Zhi, K. Müllen, Nano Lett. 2008, 8, 323.
– reference: J. L. Xia, F. Chen, J. H. Li, N. Tao, Nat. Nanotechnol. 2009, 4, 505;
– reference: M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Chem. Eur. J. 2009, 15, 6116;
– reference: R. Zboril, F. Karlicky, A. B. Bourlinos, T. A. Steriotis, A. K. Stubos, V. Georgakilas, K. Safarova, D. Jancik, C. Trapalis, M. Otyepka, Small 2010, 6, 2885.
– reference: H. X. Chang, Z. H. Sun, Q. H. Yuan, F. Ding, X. M. Tao, F. Yan, Z. J. Zheng, Adv. Mater. 2010, 22, 4872;
– reference: M. H. Yao, Y. M. Liang, Y. Q. Xia, F. Zhou, X. Q. Liu, Tribol. Lett. 2008, 32, 73.
– reference: J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865;
– reference: X. Wang, P. F. Fulvio, G. A. Baker, G. M. Veith, R. R. Unocic, S. M. Mahurin, M. Chi, S. Dai, Chem. Commun. 2010, 46, 4487;
– reference: H. X. Chang, X. J. Lv, H. Zhang, J. H. Li, Electrochem. Commun. 2010, 12, 483;
– reference: Fluorine-Carbon and Fluoride Carbon Materials (Ed.: T. Nakajima), Marcel Dekker, New York, 1995;
– reference: H. X. Chang, G. F. Wang, A. Yang, X. M. Tao, X. Q. Liu, Y. D. Shen, Z. J. Zheng, Adv. Funct. Mater. 2010, 20, 2893;
– reference: G. Q. Yu, S. Q. Yan, F. Zhou, X. Q. Liu, W. M. Liu, Y. M. Liang, Tribol. Lett. 2006, 25, 197;
– reference: J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, E. S. Snow, Nano Lett. 2010, 10, 3001.
– reference: V. Gupta, T. Nakajima, B. Zemva, J. Fluorine Chem. 2001, 110, 145;
– reference: H. X. Chang, L. Tang, Y. Wang, J. H. Jiang, J. Li, Anal. Chem. 2010, 82, 2341;
– reference: A. B. Murphy, Solar Energy Mater. Solar Cells 2007, 91, 1326;
– reference: L. J. Sham, M. Schlüter, Phys. Rev. B 1985, 32, 3883.
– reference: J. W. Bai, X. Zhong, S. Jiang, Y. Huang, X. F. Duan, Nat. Nanotechnol. 2010, 5, 190;
– reference: T. Mori, Y. Kikuzawa, H. Takeuchi, Org. Electron. 2008, 9, 328.
– reference: N. Liu, F. Luo, H. X. Wu, Y. H. Liu, C. Zhang, J. Chen, Adv. Funct. Mater. 2008, 18, 1518;
– reference: Y.-W. Son, M. L. Cohen, S. G. Louie, Nature 2006, 444, 347.
– reference: J. Y. Huang, F. Ding, B. I. Yakobson, P. Lu, L. Qi, J. Li, Proc. Natl. Acad. Sci. USA 2009, 106, 10103;
– reference: R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva. A. N. Grigorenko, K. S. Novoselov, A. K. Geim, Small 2010, 6, 2877.
– reference: L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 2009, 458, 877;
– reference: P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
– reference: Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun′ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nanotechnol. 2008, 3, 563.
– reference: S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Science 2002, 297, 2243.
– reference: Graphite Fluorides (Eds.: N. Watanabe, T. Nakajima, H. Touhara), Elsevier, New York, 1988;
– reference: L. J. Sham, M. Schlüter, Phys. Rev. Lett. 1983, 51, 1888;
– reference: G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169;
– reference: Angew. Chem. 2010, 122, 4707.
– reference: Y. Wang, Z. H. Li, D. H. Hu, C. T. Lin, J. H. Li, Y. H. Lin, J. Am. Chem. Soc. 2010, 132, 9274;
– reference: H. Zhang, X. Lv, Y. Li, Y. Wang, J. H. Li, ACS Nano 2010, 4, 380;
– reference: Angew. Chem. Int. Ed. 2010, 49, 4603;
– reference: F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, Nat. Nanotechnol. 2009, 4, 839;
– reference: S.-H. Cheng, K. Zou, H. R. Gutierrez, A. Gupta, N. Shen, P. C. Eklund, J. O. Sofo, J. Zhu, F. Okino, Phys. Rev. B 2010, 81, 205435;
– reference: H. X. Chang, Z. H. Sun, K. Y. F. Ho, X. M. Tao, F. Yan, W. M. Kwok, Z. J. Zheng, Nanoscale 2011, 3, 258;
– reference: A. M. Rao, A. W. P. Fung, S. L. Vittorio, M. S. Dresselhaus, G. Dresselhaus, M. Endo, K. Oshida, T. Nakajima, Phys. Rev. B 1992, 45, 6883.
– volume: 91
  start-page: 1326
  year: 2007
  publication-title: Solar Energy Mater. Solar Cells
– volume: 9
  start-page: 328
  year: 2008
  publication-title: Org. Electron.
– volume: 120
  start-page: 143
  year: 2003
  publication-title: J. Fluorine Chem.
– volume: 8
  start-page: 323
  year: 2008
  publication-title: Nano Lett.
– volume: 106
  start-page: 10103
  year: 2009
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 82
  start-page: 2341
  year: 2010
  publication-title: Anal. Chem.
– volume: 3
  start-page: 258
  year: 2011
  publication-title: Nanoscale
– volume: 132
  start-page: 9274
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 73
  year: 2008
  publication-title: Tribol. Lett.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 494
  year: 2010
  publication-title: Nano Lett.
– volume: 18
  start-page: 1518
  year: 2008
  publication-title: Adv. Funct. Mater.
– volume: 96
  start-page: 246401
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 81
  start-page: 205435
  year: 2010
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 3001
  year: 2010
  publication-title: Nano Lett.
– volume: 97
  start-page: 216803
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 444
  start-page: 347
  year: 2006
  publication-title: Nature
– volume: 323
  start-page: 610
  year: 2009
  publication-title: Science
– volume: 324
  start-page: 1530
  year: 2009
  publication-title: Science
– volume: 3
  start-page: 2367
  year: 2009
  publication-title: ACS Nano
– volume: 54
  start-page: 11169
  year: 1996
  publication-title: Phys. Rev. B
– volume: 121 48
  start-page: 4879 4785
  year: 2009 2009
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 51
  start-page: 1888
  year: 1983
  publication-title: Phys. Rev. Lett.
– volume: 458
  start-page: 877
  year: 2009
  publication-title: Nature
– volume: 6
  start-page: 2877
  year: 2010
  publication-title: Small
– volume: 122 49 122
  start-page: 4707 4603 4707
  year: 2010 2010 2010
  publication-title: Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem.
– volume: 46
  start-page: 4487
  year: 2010
  publication-title: Chem. Commun.
– volume: 12
  start-page: 483
  year: 2010
  publication-title: Electrochem. Commun.
– volume: 5
  start-page: 190
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 770
  year: 2007
  publication-title: Nat. Mater.
– volume: 110
  start-page: 145
  year: 2001
  publication-title: J. Fluorine Chem.
– volume: 22
  start-page: 4872
  year: 2010
  publication-title: Adv. Mater.
– volume: 82
  start-page: 073403
  year: 2010
  publication-title: Phys. Rev. B
– volume: 46
  start-page: 386
  year: 2010
  publication-title: Chem. Commun.
– volume: 32
  start-page: 3883
  year: 1985
  publication-title: Phys. Rev. B
– volume: 319
  start-page: 1229
  year: 2008
  publication-title: Science
– volume: 25
  start-page: 197
  year: 2006
  publication-title: Tribol. Lett.
– volume: 15
  start-page: 6116
  year: 2009
  publication-title: Chem. Eur. J.
– volume: 45
  start-page: 1558
  year: 2007
  publication-title: Carbon
– volume: 4
  start-page: 380
  year: 2010
  publication-title: ACS Nano
– volume: 4
  start-page: 505
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 2893
  year: 2010
  publication-title: Adv. Funct. Mater.
– year: 1988
– volume: 6
  start-page: 2885
  year: 2010
  publication-title: Small
– volume: 297
  start-page: 2243
  year: 2002
  publication-title: Science
– volume: 3
  start-page: 563
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 1042
  year: 2011
  publication-title: ACS Nano
– year: 1995
– volume: 4
  start-page: 839
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 45
  start-page: 6883
  year: 1992
  publication-title: Phys. Rev. B
– volume: 50
  start-page: 17953
  year: 1994
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 307
  year: 2010
  publication-title: Small
– volume: 459
  start-page: 820
  year: 2009
  publication-title: Nature
– ident: e_1_2_6_33_2
  doi: 10.1002/ange.201000270
– ident: e_1_2_6_57_2
  doi: 10.1103/PhysRevLett.51.1888
– ident: e_1_2_6_31_2
  doi: 10.1002/ange.200901479
– ident: e_1_2_6_21_2
  doi: 10.1021/ac9025384
– ident: e_1_2_6_44_2
– ident: e_1_2_6_28_2
  doi: 10.1038/nnano.2009.292
– ident: e_1_2_6_13_2
– ident: e_1_2_6_9_2
  doi: 10.1038/nmat2003
– ident: e_1_2_6_35_2
– ident: e_1_2_6_45_2
  doi: 10.1007/s11249-006-9167-8
– ident: e_1_2_6_58_2
  doi: 10.1103/PhysRevB.32.3883
– ident: e_1_2_6_8_2
  doi: 10.1021/nl903278w
– ident: e_1_2_6_18_2
  doi: 10.1002/adma.201002229
– ident: e_1_2_6_49_2
  doi: 10.1126/science.1075035
– ident: e_1_2_6_10_2
  doi: 10.1038/nature08105
– ident: e_1_2_6_16_2
  doi: 10.1002/smll.201001555
– ident: e_1_2_6_42_2
  doi: 10.1021/nn1025274
– ident: e_1_2_6_22_2
  doi: 10.1016/j.elecom.2010.01.025
– ident: e_1_2_6_19_2
  doi: 10.1002/adfm.201000900
– ident: e_1_2_6_27_2
  doi: 10.1016/j.carbon.2007.02.034
– ident: e_1_2_6_7_2
  doi: 10.1038/nnano.2010.8
– ident: e_1_2_6_20_2
  doi: 10.1073/pnas.0905193106
– ident: e_1_2_6_52_2
  doi: 10.1016/S0022-1139(01)00422-5
– ident: e_1_2_6_40_2
  doi: 10.1038/nnano.2008.215
– ident: e_1_2_6_63_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_6_29_2
  doi: 10.1021/nl072838r
– ident: e_1_2_6_30_2
– ident: e_1_2_6_17_2
– ident: e_1_2_6_34_2
  doi: 10.1021/nl101437p
– ident: e_1_2_6_31_3
  doi: 10.1002/anie.200901479
– ident: e_1_2_6_33_3
  doi: 10.1002/anie.201000270
– ident: e_1_2_6_41_2
– ident: e_1_2_6_61_2
  doi: 10.1038/nature05180
– ident: e_1_2_6_54_2
  doi: 10.1103/PhysRevB.45.6883
– ident: e_1_2_6_32_2
  doi: 10.1002/smll.200901968
– ident: e_1_2_6_5_2
  doi: 10.1126/science.1150878
– ident: e_1_2_6_36_2
  doi: 10.1002/adfm.200700797
– ident: e_1_2_6_47_2
– ident: e_1_2_6_38_2
  doi: 10.1039/c0cc00799d
– ident: e_1_2_6_55_2
– volume-title: Graphite Fluorides
  year: 1988
  ident: e_1_2_6_50_2
– ident: e_1_2_6_37_2
  doi: 10.1021/nn900546b
– ident: e_1_2_6_26_2
  doi: 10.1021/nn901221k
– ident: e_1_2_6_6_2
  doi: 10.1103/PhysRevLett.97.216803
– volume-title: Fluorine‐Carbon and Fluoride Carbon Materials
  year: 1995
  ident: e_1_2_6_53_2
– ident: e_1_2_6_46_2
  doi: 10.1007/s11249-008-9364-8
– ident: e_1_2_6_39_2
  doi: 10.1039/B914763B
– ident: e_1_2_6_23_2
  doi: 10.1039/C0NR00588F
– ident: e_1_2_6_33_4
  doi: 10.1002/ange.201000270
– ident: e_1_2_6_25_2
  doi: 10.1021/ja103169v
– ident: e_1_2_6_56_2
  doi: 10.1103/PhysRevLett.96.246401
– ident: e_1_2_6_65_2
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_6_43_2
  doi: 10.1002/smll.201001401
– ident: e_1_2_6_12_2
  doi: 10.1016/j.orgel.2008.01.002
– ident: e_1_2_6_2_2
  doi: 10.1126/science.1158877
– ident: e_1_2_6_14_2
  doi: 10.1103/PhysRevB.81.205435
– ident: e_1_2_6_48_2
  doi: 10.1016/j.solmat.2007.05.005
– ident: e_1_2_6_64_2
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_6_60_2
  doi: 10.1038/nature07919
– ident: e_1_2_6_15_2
  doi: 10.1103/PhysRevB.82.073403
– ident: e_1_2_6_51_2
  doi: 10.1016/S0022-1139(02)00323-8
– ident: e_1_2_6_24_2
  doi: 10.1038/nnano.2009.177
– ident: e_1_2_6_59_2
– ident: e_1_2_6_62_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_6_3_2
  doi: 10.1126/science.1167130
– ident: e_1_2_6_4_2
– ident: e_1_2_6_1_2
– ident: e_1_2_6_11_2
  doi: 10.1002/chem.200900596
SSID ssj0009633
Score 2.4039445
Snippet The bandgap opening of graphene is extremely important for the expansion of the applications of graphene‐based materials into optoelectronics and photonics....
The bandgap opening of graphene is extremely important for the expansion of the applications of graphene-based materials into optoelectronics and photonics....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8896
SubjectTerms Chemistry
density functional theory
fluorine
graphene
ionic liquids
Semiconductors
Title Facile Synthesis of Wide-Bandgap Fluorinated Graphene Semiconductors
URI https://api.istex.fr/ark:/67375/WNG-HDSR202J-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201100699
https://www.ncbi.nlm.nih.gov/pubmed/21714019
https://www.proquest.com/docview/1766612172
https://www.proquest.com/docview/1093489338
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIaPUFnAhvslpaAgIVildexkHC-hkI4q0UWHqt1ZvgVVLUk1mZEKKx6BZ-RJOCeZpAwCIcEysp3E99_28XcAXhiDEwHnPsnkpMIFShqSYuJlkhaVSl2V5ZbRBef3B5PpUbZ_kp_8dIu_50OMG27UM7rxmjq4se3OFTQU8_SpQ3ASbJdu8JHBFqmiwyt-FLau3pd8JhNisA7URsZ31pOvzUrXqYAvfyc51xVsNwWVt8EMP99bnpxtLxd22335hev4P7m7A7dW-jR-3Teou3At1Pfgxu7gFu4-lKVx-MZ49rlG7dietnFTxcenPnz_-u2Nqf1HcxGX50uy60MZ6-M9ImLjgBrPyAy_qYkv28zbB3BUvvuwO01WzhgSl0mpEhKWuQhMsco57jKLExtqoZSObnxqVSGswZW28gWGqpwHYyciSKWyQllWSPEQNuqmDo8hVp5J46qUiRCygBqFCVz15KnAoTa3ykeQDJWh3YpUTg4zznXPWOaaSkePpRPBqzH-Rc_o-GPMl13djtHM_Iws22Sujw_29PTt7JAzvq_LCLaGyterTt1qYmkScE3yCJ6PwVj8dMZi6tAsWzrQF8TzEUUEj_pGM36Mk7N5lNQR8K7q__KzmqAY49PmvyR6AjeHPXCWbsHGYr4MT1FELeyzrqP8AP2_EFs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHpT2US6H8NVAgSPyc0jpOso4PHKDbdPu3h26r9macxEFVS1JtdgXlxCPwKrwKj8CTMJO_ahEICakHjlGcxPaMPTOO_Q3Ac63REHCeOr7oZRiguMYJe6lw3DCTbpL5QczogPP-sDc48ndOgpM5-Naehan5EN2CG42Mar6mAU4L0utX1FBs1IeKwUm0Xdnsq9w1lx8xaitfb_dRxC84jzYPNwZOk1jASXwhpENOUuAZJlmWJDzxY5yk0a679BsidWMZerHGqFGmId6VATc67nlGSOmHMmah8PC9N2CB0ogTrr9_cEWsQn2us9f7wiHqa8uJZHx9tr4zdnCBRPrpd07urM9cGb3oFnxvu6ve63K2Np3Ea8nnX0iS_1V_3oalxgW339RjZhnmTH4HFjfazHd3IYp0gk2wR5c5usflaWkXmX18mpofX76-1Xn6Xl_Y0fmUti6ip57aWwT9Rpthj-ikQZETQrcYl_fg6FqacR_m8yI3K2DLlAmdZC7zjPENumHMw8AucD20JkEsUwucVvoqaWDslBPkXNUYaa5IGqqThgWvuvIXNYbkjyVfVsrUFdPjM9q8JwJ1PNxSg_7ogDO-oyILVlttU828VSrChRJTTnALnnW3sfvpN5LOTTEtac-CR8giL7TgQa2l3cfwSYrYsRa80rW_VFYR96O7evgvDz2FxcHh_p7a2x7uPoKb7ZI_c1dhfjKemsfoM07iJ9UoteHddavxT3XUanQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVgIuvB-BAkHicUqbOA_HBw7QJd22sEJdqvZmnNhBVUuy2uwKyomfwE_hr_AX-CXM5FUtAiEh9cAx8iO2Z-z5xh5_BnikFBoCxrQT8ChHB8UzThxp7nhxLrwsD8LUpQvOr0fRcC_YPggPluBbdxem4YfoN9xoZtTrNU3wic7XT0lDsU8fagpOItsVbVjljjn5iE5b9WxrgBJ-zFjy8u3G0GnfFXCygHPhEEYKfeMKN88ylgUprtFo1j06hdBeKmI_Veg0Ch1jqgiZUWnkGy5EEIvUjbmP9Z6DlSDCGgiG7Z4SVqE6N4_XB9wh0teOJtJl64vtXTCDKyTRT7_DuIuQubZ5yWX43o1WE-pytDafpWvZ51-IJP-n4bwCl1oAbj9vZsxVWDLFNbiw0b17dx2SRGXYA3t8UiA4rg4ru8zt_UNtfnz5-kIV-r2a2MnxnAIXEadre5Mov9Fi2GO6Z1AWRKBbTqsbsHcm3bgJy0VZmNtgC-1yleWe6xsTGARhro9uXej5aEvCVGgLnE74Mmup2OlFkGPZkEgzSdKQvTQseNrnnzQkJH_M-aTWpT6bmh5R6B4P5f5oUw4H413msm2ZWLDaKZtsV61KElkoMcpxZsHDPhmHnw6RVGHKeUURCz4RFvmxBbcaJe1_hiXJX8dWsFrV_tJYSawf_dedfyn0AM6_GSTy1dZo5y5c7Pb7XW8VlmfTubmHgHGW3q_nqA3vzlqLfwKbNWkj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Synthesis+of+Wide-Bandgap+Fluorinated+Graphene+Semiconductors&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Chang%2C+Haixin&rft.au=Cheng%2C+Jinsheng&rft.au=Liu%2C+Xuqing&rft.au=Gao%2C+Junfeng&rft.date=2011-08-01&rft.pub=WILEY-VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=17&rft.issue=32&rft.spage=8896&rft.epage=8903&rft_id=info:doi/10.1002%2Fchem.201100699&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_HDSR202J_F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon