Facile Synthesis of Wide-Bandgap Fluorinated Graphene Semiconductors
The bandgap opening of graphene is extremely important for the expansion of the applications of graphene‐based materials into optoelectronics and photonics. Current methods to open the bandgap of graphene have intrinsic drawbacks including small bandgap openings, the use hazardous/harsh chemical oxi...
Saved in:
Published in | Chemistry : a European journal Vol. 17; no. 32; pp. 8896 - 8903 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.08.2011
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The bandgap opening of graphene is extremely important for the expansion of the applications of graphene‐based materials into optoelectronics and photonics. Current methods to open the bandgap of graphene have intrinsic drawbacks including small bandgap openings, the use hazardous/harsh chemical oxidations, and the requirement of expensive chemical‐vapor deposition technologies. Herein, an eco‐friendly, highly effective, low‐cost, and highly scalable synthetic approach is reported for synthesizing wide‐bandgap fluorinated graphene (F‐graphene or or fluorographene) semiconductors under ambient conditions. In this synthesis, ionic liquids are used as the only chemical to exfoliate commercially available fluorinated graphite into single and few‐layer F‐graphene. Experimental and theoretical results show that the bandgap of F‐graphene is largely dependent on the F coverage and configuration, and thereby can be tuned over a very wide range.
Fluorinated graphenes: An eco‐friendly, highly effective, low‐cost, and highly scalable approach has been developed to synthesize wide‐bandgap fluorinated graphene (F‐graphene; see figure) semiconductors. Experimental and theoretical results show the F‐graphene bandgaps are largely dependent on the F coverage and configurations, and can be tuned over a very wide range. |
---|---|
AbstractList | The bandgap opening of graphene is extremely important for the expansion of the applications of graphene-based materials into optoelectronics and photonics. Current methods to open the bandgap of graphene have intrinsic drawbacks including small bandgap openings, the use hazardous/harsh chemical oxidations, and the requirement of expensive chemical-vapor deposition technologies. Herein, an eco-friendly, highly effective, low-cost, and highly scalable synthetic approach is reported for synthesizing wide-bandgap fluorinated graphene (F-graphene or or fluorographene) semiconductors under ambient conditions. In this synthesis, ionic liquids are used as the only chemical to exfoliate commercially available fluorinated graphite into single and few-layer F-graphene. Experimental and theoretical results show that the bandgap of F-graphene is largely dependent on the F coverage and configuration, and thereby can be tuned over a very wide range.The bandgap opening of graphene is extremely important for the expansion of the applications of graphene-based materials into optoelectronics and photonics. Current methods to open the bandgap of graphene have intrinsic drawbacks including small bandgap openings, the use hazardous/harsh chemical oxidations, and the requirement of expensive chemical-vapor deposition technologies. Herein, an eco-friendly, highly effective, low-cost, and highly scalable synthetic approach is reported for synthesizing wide-bandgap fluorinated graphene (F-graphene or or fluorographene) semiconductors under ambient conditions. In this synthesis, ionic liquids are used as the only chemical to exfoliate commercially available fluorinated graphite into single and few-layer F-graphene. Experimental and theoretical results show that the bandgap of F-graphene is largely dependent on the F coverage and configuration, and thereby can be tuned over a very wide range. The bandgap opening of graphene is extremely important for the expansion of the applications of graphene-based materials into optoelectronics and photonics. Current methods to open the bandgap of graphene have intrinsic drawbacks including small bandgap openings, the use hazardous/harsh chemical oxidations, and the requirement of expensive chemical-vapor deposition technologies. Herein, an eco-friendly, highly effective, low-cost, and highly scalable synthetic approach is reported for synthesizing wide-bandgap fluorinated graphene (F-graphene or or fluorographene) semiconductors under ambient conditions. In this synthesis, ionic liquids are used as the only chemical to exfoliate commercially available fluorinated graphite into single and few-layer F-graphene. Experimental and theoretical results show that the bandgap of F-graphene is largely dependent on the F coverage and configuration, and thereby can be tuned over a very wide range. The bandgap opening of graphene is extremely important for the expansion of the applications of graphene‐based materials into optoelectronics and photonics. Current methods to open the bandgap of graphene have intrinsic drawbacks including small bandgap openings, the use hazardous/harsh chemical oxidations, and the requirement of expensive chemical‐vapor deposition technologies. Herein, an eco‐friendly, highly effective, low‐cost, and highly scalable synthetic approach is reported for synthesizing wide‐bandgap fluorinated graphene (F‐graphene or or fluorographene) semiconductors under ambient conditions. In this synthesis, ionic liquids are used as the only chemical to exfoliate commercially available fluorinated graphite into single and few‐layer F‐graphene. Experimental and theoretical results show that the bandgap of F‐graphene is largely dependent on the F coverage and configuration, and thereby can be tuned over a very wide range. Fluorinated graphenes: An eco‐friendly, highly effective, low‐cost, and highly scalable approach has been developed to synthesize wide‐bandgap fluorinated graphene (F‐graphene; see figure) semiconductors. Experimental and theoretical results show the F‐graphene bandgaps are largely dependent on the F coverage and configurations, and can be tuned over a very wide range. |
Author | Li, Mingjian Chang, Haixin Tao, Xiaoming Li, Jinghong Cheng, Jinsheng Ding, Feng Zheng, Zijian Liu, Xuqing Gao, Junfeng |
Author_xml | – sequence: 1 givenname: Haixin surname: Chang fullname: Chang, Haixin organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (P.R. China) and Advanced Research Centre for Fashion and Textiles, The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (P.R. China), Fax: (+852) 27731432 – sequence: 2 givenname: Jinsheng surname: Cheng fullname: Cheng, Jinsheng organization: Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China), Fax: (+86) 10-62795290 – sequence: 3 givenname: Xuqing surname: Liu fullname: Liu, Xuqing organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (P.R. China) and Advanced Research Centre for Fashion and Textiles, The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (P.R. China), Fax: (+852) 27731432 – sequence: 4 givenname: Junfeng surname: Gao fullname: Gao, Junfeng organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (P.R. China) and Advanced Research Centre for Fashion and Textiles, The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (P.R. China), Fax: (+852) 27731432 – sequence: 5 givenname: Mingjian surname: Li fullname: Li, Mingjian organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (P.R. China) and Advanced Research Centre for Fashion and Textiles, The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (P.R. China), Fax: (+852) 27731432 – sequence: 6 givenname: Jinghong surname: Li fullname: Li, Jinghong email: jhli@mail.tsinghua.edu.cn organization: Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China), Fax: (+86) 10-62795290 – sequence: 7 givenname: Xiaoming surname: Tao fullname: Tao, Xiaoming organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (P.R. China) and Advanced Research Centre for Fashion and Textiles, The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (P.R. China), Fax: (+852) 27731432 – sequence: 8 givenname: Feng surname: Ding fullname: Ding, Feng email: feng.ding@inet.polyu.edu.hk organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (P.R. China) and Advanced Research Centre for Fashion and Textiles, The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (P.R. China), Fax: (+852) 27731432 – sequence: 9 givenname: Zijian surname: Zheng fullname: Zheng, Zijian email: tczzheng@inet.polyu.edu.hk organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (P.R. China) and Advanced Research Centre for Fashion and Textiles, The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (P.R. China), Fax: (+852) 27731432 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21714019$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URNOPa4_VSly4bPDH2l4fIW0SUKESperR8nonjdtdO9i7gvx7XKVEqBLiZI38PDOjeY_QgQ8eEDojeEowpu_tGvopxSQXQqlXaEI4JSWTgh-gCVaVLAVn6hAdpfSAMVaCsTfokBJJKkzUBF3MjXUdFDdbP6whuVSEVXHnWig_Gt_em00x78YQnTcDtMUims0afMahdzb4drRDiOkEvV6ZLsHp83uMbueX32fL8up68Wn24aq0lZSqrPPCnAFWeGUttVVDaM0JJ1gI3pJG1awxQmHV1vlXcQqmEQykUlWtGlxLdoze7fpuYvgxQhp075KFrjMewpg0wYpllrE6o29foA9hjD5vp4kUQpB8Apqp82dqbHpo9Sa63sSt_nOfDEx3gI0hpQirPUKwfgpAPwWg9wFkoXohWDeYwQU_ROO6f2tqp_3MYWz_M0TPlpdf_nbLnevSAL_2romPWkgmub77utDLi5tvFNPPes5-A_LJpos |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1016_j_mseb_2021_115163 crossref_primary_10_1039_C6CP06164H crossref_primary_10_1039_c3cp53383b crossref_primary_10_1039_C4CS00141A crossref_primary_10_7567_JJAP_52_06GD11 crossref_primary_10_1016_j_cej_2018_12_044 crossref_primary_10_1039_c2ra21871b crossref_primary_10_1016_j_mtcomm_2022_104130 crossref_primary_10_1016_j_apsusc_2020_146071 crossref_primary_10_1016_j_diamond_2023_109760 crossref_primary_10_1021_nn500508c crossref_primary_10_1007_s00339_018_1999_1 crossref_primary_10_1016_j_carbon_2018_05_005 crossref_primary_10_1117_1_OE_62_9_097102 crossref_primary_10_1007_s10854_019_01839_3 crossref_primary_10_1016_j_colsurfa_2019_123707 crossref_primary_10_1039_C8CS00291F crossref_primary_10_1557_jmr_2017_135 crossref_primary_10_1016_j_mattod_2013_01_021 crossref_primary_10_1002_aenm_202201344 crossref_primary_10_1016_j_seppur_2018_08_077 crossref_primary_10_1021_nn4023679 crossref_primary_10_1016_j_matlet_2016_02_042 crossref_primary_10_1134_S0022476620040046 crossref_primary_10_1016_j_jscs_2018_10_005 crossref_primary_10_1002_adfm_201202460 crossref_primary_10_1007_s11164_016_2847_6 crossref_primary_10_1039_C4TA01183J crossref_primary_10_1016_j_carbon_2014_10_088 crossref_primary_10_1016_j_carbon_2014_10_008 crossref_primary_10_3390_c7010020 crossref_primary_10_1039_c3ra43578d crossref_primary_10_1039_C6RA21083J crossref_primary_10_1016_j_carbon_2013_06_066 crossref_primary_10_1021_am405046u crossref_primary_10_1002_pi_5975 crossref_primary_10_1016_j_carbon_2014_05_062 crossref_primary_10_1088_1361_6528_aa5c79 crossref_primary_10_1002_adma_201707600 crossref_primary_10_1177_22808000211037487 crossref_primary_10_2139_ssrn_4110013 crossref_primary_10_1007_s10876_014_0834_x crossref_primary_10_1016_j_jpcs_2023_111675 crossref_primary_10_3390_ma16113929 crossref_primary_10_1016_j_susc_2014_12_013 crossref_primary_10_1021_acsmacrolett_6b00732 crossref_primary_10_1016_j_molliq_2018_07_054 crossref_primary_10_1039_C6NR08148G crossref_primary_10_1038_s41598_017_18170_8 crossref_primary_10_1557_mrs_2012_178 crossref_primary_10_1039_c3ra22029j crossref_primary_10_1016_j_mseb_2019_06_005 crossref_primary_10_1016_j_cej_2025_160505 crossref_primary_10_1039_C3NR04609E crossref_primary_10_1016_j_diamond_2021_108342 crossref_primary_10_1039_C9QM00517J crossref_primary_10_1021_acsami_5b10579 crossref_primary_10_1002_admt_202000744 crossref_primary_10_1007_s10934_020_00907_y crossref_primary_10_1021_acs_jpcc_7b03949 crossref_primary_10_1021_acs_nanolett_9b02178 crossref_primary_10_1021_acs_jpcc_0c09957 crossref_primary_10_1002_adfm_201102305 crossref_primary_10_1016_j_carbon_2012_07_026 crossref_primary_10_1016_j_porgcoat_2020_105800 crossref_primary_10_1063_1_4793997 crossref_primary_10_1016_j_micromeso_2020_110127 crossref_primary_10_1016_j_nanoen_2015_12_016 crossref_primary_10_7209_tanso_2015_11 crossref_primary_10_1002_advs_202003864 crossref_primary_10_1016_j_porgcoat_2019_105481 crossref_primary_10_1016_j_compscitech_2019_107960 crossref_primary_10_1007_s00339_018_1906_9 crossref_primary_10_1007_s11434_012_5121_3 crossref_primary_10_1039_D3RA07072G crossref_primary_10_1103_PhysRevB_87_115431 crossref_primary_10_1039_c3nr33218g crossref_primary_10_1039_C6NR00353B crossref_primary_10_1016_j_apmt_2017_05_004 crossref_primary_10_1016_j_porgcoat_2022_107047 crossref_primary_10_1039_C4TA00847B crossref_primary_10_1016_j_corsci_2015_10_039 crossref_primary_10_1140_epjd_e2013_30538_3 crossref_primary_10_1039_c2ra20585h crossref_primary_10_1039_C7DT04565D crossref_primary_10_1016_j_jclepro_2018_08_271 crossref_primary_10_1039_C7CS00215G crossref_primary_10_1002_cplu_201200012 crossref_primary_10_1002_slct_201803871 crossref_primary_10_1021_acsami_5b04319 crossref_primary_10_1039_c3ee42518e crossref_primary_10_1038_s41598_020_74618_4 crossref_primary_10_1080_26941112_2020_1869475 crossref_primary_10_1186_s40580_017_0107_0 crossref_primary_10_1002_slct_201902114 crossref_primary_10_1016_S1872_2067_24_60156_7 crossref_primary_10_1002_adma_202101665 crossref_primary_10_1039_c3cc46809g crossref_primary_10_1016_j_jtice_2018_08_034 crossref_primary_10_1016_j_cej_2020_125104 crossref_primary_10_1021_nn4024027 crossref_primary_10_1039_c2jm32294c crossref_primary_10_1039_c3nr02173d crossref_primary_10_1002_cplu_201300124 crossref_primary_10_1016_j_porgcoat_2021_106321 crossref_primary_10_1039_C4RA10313K crossref_primary_10_1039_C3RA45183F crossref_primary_10_1007_s11051_016_3503_1 crossref_primary_10_1039_c3ta11710c crossref_primary_10_1002_asia_201300401 crossref_primary_10_3390_cryst8040171 crossref_primary_10_1002_advs_201500413 crossref_primary_10_1002_smll_202005640 crossref_primary_10_1016_j_electacta_2013_11_040 crossref_primary_10_1002_smtd_202401591 crossref_primary_10_1039_c2tc00570k |
Cites_doi | 10.1002/ange.201000270 10.1103/PhysRevLett.51.1888 10.1002/ange.200901479 10.1021/ac9025384 10.1038/nnano.2009.292 10.1038/nmat2003 10.1007/s11249-006-9167-8 10.1103/PhysRevB.32.3883 10.1021/nl903278w 10.1002/adma.201002229 10.1126/science.1075035 10.1038/nature08105 10.1002/smll.201001555 10.1021/nn1025274 10.1016/j.elecom.2010.01.025 10.1002/adfm.201000900 10.1016/j.carbon.2007.02.034 10.1038/nnano.2010.8 10.1073/pnas.0905193106 10.1016/S0022-1139(01)00422-5 10.1038/nnano.2008.215 10.1103/PhysRevLett.77.3865 10.1021/nl072838r 10.1021/nl101437p 10.1002/anie.200901479 10.1002/anie.201000270 10.1038/nature05180 10.1103/PhysRevB.45.6883 10.1002/smll.200901968 10.1126/science.1150878 10.1002/adfm.200700797 10.1039/c0cc00799d 10.1021/nn900546b 10.1021/nn901221k 10.1103/PhysRevLett.97.216803 10.1007/s11249-008-9364-8 10.1039/B914763B 10.1039/C0NR00588F 10.1021/ja103169v 10.1103/PhysRevLett.96.246401 10.1103/PhysRevB.50.17953 10.1002/smll.201001401 10.1016/j.orgel.2008.01.002 10.1126/science.1158877 10.1103/PhysRevB.81.205435 10.1016/j.solmat.2007.05.005 10.1103/PhysRevB.59.1758 10.1038/nature07919 10.1103/PhysRevB.82.073403 10.1016/S0022-1139(02)00323-8 10.1038/nnano.2009.177 10.1103/PhysRevB.54.11169 10.1126/science.1167130 10.1002/chem.200900596 |
ContentType | Journal Article |
Copyright | Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201100699 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 8903 |
ExternalDocumentID | 3957762031 21714019 10_1002_chem_201100699 CHEM201100699 ark_67375_WNG_HDSR202J_F |
Genre | article Journal Article |
GrantInformation_xml | – fundername: The Hong Kong Polytechnic University funderid: A‐PJ49; A‐PK92 – fundername: National Basic Research Program of China funderid: 2011CB935704 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ .GJ 186 6TJ 9M8 AAYXX ABDBF ABEML ACSCC ACUHS AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. BZBRT CITATION EBD H~9 MVM PALCI RIWAO RJQFR SAMSI UQL VH1 Y6R ZGI NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4779-800253e090fcc2c4b12851510665d1b983ba6909d8c2c952eab63e799489b0873 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Thu Jul 10 23:27:57 EDT 2025 Sun Jul 13 05:06:21 EDT 2025 Mon Jul 21 05:33:09 EDT 2025 Tue Jul 01 03:34:16 EDT 2025 Thu Apr 24 23:12:29 EDT 2025 Wed Jan 22 16:26:10 EST 2025 Wed Oct 30 10:00:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4779-800253e090fcc2c4b12851510665d1b983ba6909d8c2c952eab63e799489b0873 |
Notes | The Hong Kong Polytechnic University - No. A-PJ49; No. A-PK92 National Basic Research Program of China - No. 2011CB935704 istex:C54ECA5B407EB8DA2E3860FA18729B27062BBDD2 ark:/67375/WNG-HDSR202J-F ArticleID:CHEM201100699 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 21714019 |
PQID | 1766612172 |
PQPubID | 986340 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1093489338 proquest_journals_1766612172 pubmed_primary_21714019 crossref_primary_10_1002_chem_201100699 crossref_citationtrail_10_1002_chem_201100699 wiley_primary_10_1002_chem_201100699_CHEM201100699 istex_primary_ark_67375_WNG_HDSR202J_F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 1, 2011 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: August 1, 2011 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2011 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | Z. Y. Yin, S. X. Wu, X. Z. Zhou, X. Huang, Q. C. Zhang, F. Boey, H. Zhang, Small 2010, 6, 307 Angew. Chem. 2010, 122, 4707. L. J. Sham, M. Schlüter, Phys. Rev. B 1985, 32, 3883. S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H. Lee, F. Guinea, A. H. C. Neto, A. Lanzara, Nat. Mater. 2007, 6, 770 Angew. Chem. Int. Ed. 2010, 49, 4603 N. Liu, F. Luo, H. X. Wu, Y. H. Liu, C. Zhang, J. Chen, Adv. Funct. Mater. 2008, 18, 1518 A. M. Rao, A. W. P. Fung, S. L. Vittorio, M. S. Dresselhaus, G. Dresselhaus, M. Endo, K. Oshida, T. Nakajima, Phys. Rev. B 1992, 45, 6883. S.-H. Cheng, K. Zou, H. R. Gutierrez, A. Gupta, N. Shen, P. C. Eklund, J. O. Sofo, J. Zhu, F. Okino, Phys. Rev. B 2010, 81, 205435 R. Zboril, F. Karlicky, A. B. Bourlinos, T. A. Steriotis, A. K. Stubos, V. Georgakilas, K. Safarova, D. Jancik, C. Trapalis, M. Otyepka, Small 2010, 6, 2885. R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva. A. N. Grigorenko, K. S. Novoselov, A. K. Geim, Small 2010, 6, 2877. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 2009, 458, 877 Angew. Chem. Int. Ed. 2009, 48, 4785 L. Y. Zhu, J. L. Wang, T. T. Zhang, L. Ma, C. W. Lim, F. Ding, X. C. Zeng, Nano Lett. 2010, 10, 494. Graphite Fluorides (Eds.: N. Watanabe, T. Nakajima, H. Touhara), Elsevier, New York, 1988 H. X. Chang, L. Tang, Y. Wang, J. H. Jiang, J. Li, Anal. Chem. 2010, 82, 2341 L. J. Sham, M. Schlüter, Phys. Rev. Lett. 1983, 51, 1888 J. W. Bai, X. Zhong, S. Jiang, Y. Huang, X. F. Duan, Nat. Nanotechnol. 2010, 5, 190 A. B. Murphy, Solar Energy Mater. Solar Cells 2007, 91, 1326 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558. Fluorine-Carbon and Fluoride Carbon Materials (Ed.: T. Nakajima), Marcel Dekker, New York, 1995 H. X. Chang, X. J. Lv, H. Zhang, J. H. Li, Electrochem. Commun. 2010, 12, 483 Y. W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 2006, 97, 216803 M. H. Yao, Y. M. Liang, Y. Q. Xia, F. Zhou, X. Q. Liu, Tribol. Lett. 2008, 32, 73. C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, G. N. Chen, Angew. Chem. 2009, 121, 4879 V. Gupta, T. Nakajima, Y. Ohzawa, B. Zemva, J. Fluorine Chem. 2003, 120, 143 X. S. Zhou, T. B. Wu, K. L. Ding, B. J. Hu, M. Q. Hou, B. X. Han, Chem. Commun. 2010, 46, 386 X. Wang, P. F. Fulvio, G. A. Baker, G. M. Veith, R. R. Unocic, S. M. Mahurin, M. Chi, S. Dai, Chem. Commun. 2010, 46, 4487 P. E. Blöchl, Phys. Rev. B 1994, 50, 17953. M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Chem. Eur. J. 2009, 15, 6116 X. Wang, L. Zhi, K. Müllen, Nano Lett. 2008, 8, 323. F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, Nat. Nanotechnol. 2009, 4, 839 V. Gupta, T. Nakajima, B. Zemva, J. Fluorine Chem. 2001, 110, 145 P. A. Schultz, Phys. Rev. Lett. 2006, 96, 246401 Z. H. Tang, S. L. Shen, J. Zhuang, X. Wang, Angew. Chem. 2010, 122, 4707 Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun′ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nanotechnol. 2008, 3, 563. S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Science 2002, 297, 2243. H. X. Chang, Z. H. Sun, Q. H. Yuan, F. Ding, X. M. Tao, F. Yan, Z. J. Zheng, Adv. Mater. 2010, 22, 4872 K.-J. Jeon, Z. Lee, E. Pollak, L. Moreschini, A. Bostwick, C.-M. Park, R. Mendelsberg, V. Radmilovic, R. Kostecki, T. J. Richardson, E. Rotenberg, ACS Nano 2011, 5, 1042 G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758 Y. Wang, Z. H. Li, D. H. Hu, C. T. Lin, J. H. Li, Y. H. Lin, J. Am. Chem. Soc. 2010, 132, 9274 H. X. Chang, G. F. Wang, A. Yang, X. M. Tao, X. Q. Liu, Y. D. Shen, Z. J. Zheng, Adv. Funct. Mater. 2010, 20, 2893 J. Y. Huang, F. Ding, B. I. Yakobson, P. Lu, L. Qi, J. Li, Proc. Natl. Acad. Sci. USA 2009, 106, 10103 J. L. Xia, F. Chen, J. H. Li, N. Tao, Nat. Nanotechnol. 2009, 4, 505 Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang, Nature 2009, 459, 820 G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865 J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, E. S. Snow, Nano Lett. 2010, 10, 3001. F. Withers, M. Dubois, A. K. Savchenko, Phys. Rev. B 2010, 82, 073403 G. Q. Yu, S. Q. Yan, F. Zhou, X. Q. Liu, W. M. Liu, Y. M. Liang, Tribol. Lett. 2006, 25, 197 X. L. Li, X. R. Wang, L. Zhang, S. W. Lee, H. J. Dai, Science 2008, 319, 1229 A. K. Geim, Science 2009, 324, 1530 T. Mori, Y. Kikuzawa, H. Takeuchi, Org. Electron. 2008, 9, 328. H. X. Chang, Z. H. Sun, K. Y. F. Ho, X. M. Tao, F. Yan, W. M. Kwok, Z. J. Zheng, Nanoscale 2011, 3, 258 H. Zhang, X. Lv, Y. Li, Y. Wang, J. H. Li, ACS Nano 2010, 4, 380 J. Lu, J.-X. Yang, J. Wang, A. Lim, S. Wang, K. P. Loh, ACS Nano 2009, 3, 2367 Y.-W. Son, M. L. Cohen, S. G. Louie, Nature 2006, 444, 347. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, Science 2009, 323, 610. 2010; 12 2010; 10 2006; 96 2006; 97 2002; 297 2008; 18 2008; 9 2007; 91 1983; 51 2008; 8 1995 2008; 32 2008; 3 2009; 459 2010; 81 2011; 3 2011; 5 1996; 54 2009 2009; 121 48 2010; 82 2009; 458 1996; 77 2010; 22 2010 2010 2010; 122 49 122 2001; 110 2010; 20 2010; 46 2006; 25 1999; 59 2008; 319 2010; 132 2007; 6 2009; 4 2009; 3 2010; 5 1994; 50 2010; 4 2007; 45 1992; 45 1985; 32 2009; 323 2009; 324 2009; 15 2010; 6 2003; 120 2006; 444 2009; 106 1988 e_1_2_6_51_2 e_1_2_6_30_2 e_1_2_6_19_2 (e_1_2_6_53_2) 1995 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_64_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_1_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_52_2 e_1_2_6_31_2 (e_1_2_6_50_2) 1988 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_33_4 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_33_3 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_31_3 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_61_2 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – reference: S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H. Lee, F. Guinea, A. H. C. Neto, A. Lanzara, Nat. Mater. 2007, 6, 770; – reference: F. Withers, M. Dubois, A. K. Savchenko, Phys. Rev. B 2010, 82, 073403; – reference: P. A. Schultz, Phys. Rev. Lett. 2006, 96, 246401; – reference: J. Lu, J.-X. Yang, J. Wang, A. Lim, S. Wang, K. P. Loh, ACS Nano 2009, 3, 2367; – reference: X. S. Zhou, T. B. Wu, K. L. Ding, B. J. Hu, M. Q. Hou, B. X. Han, Chem. Commun. 2010, 46, 386; – reference: K.-J. Jeon, Z. Lee, E. Pollak, L. Moreschini, A. Bostwick, C.-M. Park, R. Mendelsberg, V. Radmilovic, R. Kostecki, T. J. Richardson, E. Rotenberg, ACS Nano 2011, 5, 1042; – reference: L. Y. Zhu, J. L. Wang, T. T. Zhang, L. Ma, C. W. Lim, F. Ding, X. C. Zeng, Nano Lett. 2010, 10, 494. – reference: Y. W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 2006, 97, 216803; – reference: C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, G. N. Chen, Angew. Chem. 2009, 121, 4879; – reference: Z. H. Tang, S. L. Shen, J. Zhuang, X. Wang, Angew. Chem. 2010, 122, 4707; – reference: A. K. Geim, Science 2009, 324, 1530; – reference: Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang, Nature 2009, 459, 820; – reference: V. Gupta, T. Nakajima, Y. Ohzawa, B. Zemva, J. Fluorine Chem. 2003, 120, 143; – reference: S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558. – reference: G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758; – reference: D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, Science 2009, 323, 610. – reference: X. L. Li, X. R. Wang, L. Zhang, S. W. Lee, H. J. Dai, Science 2008, 319, 1229; – reference: Angew. Chem. Int. Ed. 2009, 48, 4785; – reference: Z. Y. Yin, S. X. Wu, X. Z. Zhou, X. Huang, Q. C. Zhang, F. Boey, H. Zhang, Small 2010, 6, 307; – reference: X. Wang, L. Zhi, K. Müllen, Nano Lett. 2008, 8, 323. – reference: J. L. Xia, F. Chen, J. H. Li, N. Tao, Nat. Nanotechnol. 2009, 4, 505; – reference: M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Chem. Eur. J. 2009, 15, 6116; – reference: R. Zboril, F. Karlicky, A. B. Bourlinos, T. A. Steriotis, A. K. Stubos, V. Georgakilas, K. Safarova, D. Jancik, C. Trapalis, M. Otyepka, Small 2010, 6, 2885. – reference: H. X. Chang, Z. H. Sun, Q. H. Yuan, F. Ding, X. M. Tao, F. Yan, Z. J. Zheng, Adv. Mater. 2010, 22, 4872; – reference: M. H. Yao, Y. M. Liang, Y. Q. Xia, F. Zhou, X. Q. Liu, Tribol. Lett. 2008, 32, 73. – reference: J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865; – reference: X. Wang, P. F. Fulvio, G. A. Baker, G. M. Veith, R. R. Unocic, S. M. Mahurin, M. Chi, S. Dai, Chem. Commun. 2010, 46, 4487; – reference: H. X. Chang, X. J. Lv, H. Zhang, J. H. Li, Electrochem. Commun. 2010, 12, 483; – reference: Fluorine-Carbon and Fluoride Carbon Materials (Ed.: T. Nakajima), Marcel Dekker, New York, 1995; – reference: H. X. Chang, G. F. Wang, A. Yang, X. M. Tao, X. Q. Liu, Y. D. Shen, Z. J. Zheng, Adv. Funct. Mater. 2010, 20, 2893; – reference: G. Q. Yu, S. Q. Yan, F. Zhou, X. Q. Liu, W. M. Liu, Y. M. Liang, Tribol. Lett. 2006, 25, 197; – reference: J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, E. S. Snow, Nano Lett. 2010, 10, 3001. – reference: V. Gupta, T. Nakajima, B. Zemva, J. Fluorine Chem. 2001, 110, 145; – reference: H. X. Chang, L. Tang, Y. Wang, J. H. Jiang, J. Li, Anal. Chem. 2010, 82, 2341; – reference: A. B. Murphy, Solar Energy Mater. Solar Cells 2007, 91, 1326; – reference: L. J. Sham, M. Schlüter, Phys. Rev. B 1985, 32, 3883. – reference: J. W. Bai, X. Zhong, S. Jiang, Y. Huang, X. F. Duan, Nat. Nanotechnol. 2010, 5, 190; – reference: T. Mori, Y. Kikuzawa, H. Takeuchi, Org. Electron. 2008, 9, 328. – reference: N. Liu, F. Luo, H. X. Wu, Y. H. Liu, C. Zhang, J. Chen, Adv. Funct. Mater. 2008, 18, 1518; – reference: Y.-W. Son, M. L. Cohen, S. G. Louie, Nature 2006, 444, 347. – reference: J. Y. Huang, F. Ding, B. I. Yakobson, P. Lu, L. Qi, J. Li, Proc. Natl. Acad. Sci. USA 2009, 106, 10103; – reference: R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva. A. N. Grigorenko, K. S. Novoselov, A. K. Geim, Small 2010, 6, 2877. – reference: L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 2009, 458, 877; – reference: P. E. Blöchl, Phys. Rev. B 1994, 50, 17953. – reference: Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun′ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nanotechnol. 2008, 3, 563. – reference: S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Science 2002, 297, 2243. – reference: Graphite Fluorides (Eds.: N. Watanabe, T. Nakajima, H. Touhara), Elsevier, New York, 1988; – reference: L. J. Sham, M. Schlüter, Phys. Rev. Lett. 1983, 51, 1888; – reference: G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169; – reference: Angew. Chem. 2010, 122, 4707. – reference: Y. Wang, Z. H. Li, D. H. Hu, C. T. Lin, J. H. Li, Y. H. Lin, J. Am. Chem. Soc. 2010, 132, 9274; – reference: H. Zhang, X. Lv, Y. Li, Y. Wang, J. H. Li, ACS Nano 2010, 4, 380; – reference: Angew. Chem. Int. Ed. 2010, 49, 4603; – reference: F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, Nat. Nanotechnol. 2009, 4, 839; – reference: S.-H. Cheng, K. Zou, H. R. Gutierrez, A. Gupta, N. Shen, P. C. Eklund, J. O. Sofo, J. Zhu, F. Okino, Phys. Rev. B 2010, 81, 205435; – reference: H. X. Chang, Z. H. Sun, K. Y. F. Ho, X. M. Tao, F. Yan, W. M. Kwok, Z. J. Zheng, Nanoscale 2011, 3, 258; – reference: A. M. Rao, A. W. P. Fung, S. L. Vittorio, M. S. Dresselhaus, G. Dresselhaus, M. Endo, K. Oshida, T. Nakajima, Phys. Rev. B 1992, 45, 6883. – volume: 91 start-page: 1326 year: 2007 publication-title: Solar Energy Mater. Solar Cells – volume: 9 start-page: 328 year: 2008 publication-title: Org. Electron. – volume: 120 start-page: 143 year: 2003 publication-title: J. Fluorine Chem. – volume: 8 start-page: 323 year: 2008 publication-title: Nano Lett. – volume: 106 start-page: 10103 year: 2009 publication-title: Proc. Natl. Acad. Sci. USA – volume: 82 start-page: 2341 year: 2010 publication-title: Anal. Chem. – volume: 3 start-page: 258 year: 2011 publication-title: Nanoscale – volume: 132 start-page: 9274 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 73 year: 2008 publication-title: Tribol. Lett. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 494 year: 2010 publication-title: Nano Lett. – volume: 18 start-page: 1518 year: 2008 publication-title: Adv. Funct. Mater. – volume: 96 start-page: 246401 year: 2006 publication-title: Phys. Rev. Lett. – volume: 81 start-page: 205435 year: 2010 publication-title: Phys. Rev. B – volume: 10 start-page: 3001 year: 2010 publication-title: Nano Lett. – volume: 97 start-page: 216803 year: 2006 publication-title: Phys. Rev. Lett. – volume: 444 start-page: 347 year: 2006 publication-title: Nature – volume: 323 start-page: 610 year: 2009 publication-title: Science – volume: 324 start-page: 1530 year: 2009 publication-title: Science – volume: 3 start-page: 2367 year: 2009 publication-title: ACS Nano – volume: 54 start-page: 11169 year: 1996 publication-title: Phys. Rev. B – volume: 121 48 start-page: 4879 4785 year: 2009 2009 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 51 start-page: 1888 year: 1983 publication-title: Phys. Rev. Lett. – volume: 458 start-page: 877 year: 2009 publication-title: Nature – volume: 6 start-page: 2877 year: 2010 publication-title: Small – volume: 122 49 122 start-page: 4707 4603 4707 year: 2010 2010 2010 publication-title: Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. – volume: 46 start-page: 4487 year: 2010 publication-title: Chem. Commun. – volume: 12 start-page: 483 year: 2010 publication-title: Electrochem. Commun. – volume: 5 start-page: 190 year: 2010 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 770 year: 2007 publication-title: Nat. Mater. – volume: 110 start-page: 145 year: 2001 publication-title: J. Fluorine Chem. – volume: 22 start-page: 4872 year: 2010 publication-title: Adv. Mater. – volume: 82 start-page: 073403 year: 2010 publication-title: Phys. Rev. B – volume: 46 start-page: 386 year: 2010 publication-title: Chem. Commun. – volume: 32 start-page: 3883 year: 1985 publication-title: Phys. Rev. B – volume: 319 start-page: 1229 year: 2008 publication-title: Science – volume: 25 start-page: 197 year: 2006 publication-title: Tribol. Lett. – volume: 15 start-page: 6116 year: 2009 publication-title: Chem. Eur. J. – volume: 45 start-page: 1558 year: 2007 publication-title: Carbon – volume: 4 start-page: 380 year: 2010 publication-title: ACS Nano – volume: 4 start-page: 505 year: 2009 publication-title: Nat. Nanotechnol. – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 20 start-page: 2893 year: 2010 publication-title: Adv. Funct. Mater. – year: 1988 – volume: 6 start-page: 2885 year: 2010 publication-title: Small – volume: 297 start-page: 2243 year: 2002 publication-title: Science – volume: 3 start-page: 563 year: 2008 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 1042 year: 2011 publication-title: ACS Nano – year: 1995 – volume: 4 start-page: 839 year: 2009 publication-title: Nat. Nanotechnol. – volume: 45 start-page: 6883 year: 1992 publication-title: Phys. Rev. B – volume: 50 start-page: 17953 year: 1994 publication-title: Phys. Rev. B – volume: 6 start-page: 307 year: 2010 publication-title: Small – volume: 459 start-page: 820 year: 2009 publication-title: Nature – ident: e_1_2_6_33_2 doi: 10.1002/ange.201000270 – ident: e_1_2_6_57_2 doi: 10.1103/PhysRevLett.51.1888 – ident: e_1_2_6_31_2 doi: 10.1002/ange.200901479 – ident: e_1_2_6_21_2 doi: 10.1021/ac9025384 – ident: e_1_2_6_44_2 – ident: e_1_2_6_28_2 doi: 10.1038/nnano.2009.292 – ident: e_1_2_6_13_2 – ident: e_1_2_6_9_2 doi: 10.1038/nmat2003 – ident: e_1_2_6_35_2 – ident: e_1_2_6_45_2 doi: 10.1007/s11249-006-9167-8 – ident: e_1_2_6_58_2 doi: 10.1103/PhysRevB.32.3883 – ident: e_1_2_6_8_2 doi: 10.1021/nl903278w – ident: e_1_2_6_18_2 doi: 10.1002/adma.201002229 – ident: e_1_2_6_49_2 doi: 10.1126/science.1075035 – ident: e_1_2_6_10_2 doi: 10.1038/nature08105 – ident: e_1_2_6_16_2 doi: 10.1002/smll.201001555 – ident: e_1_2_6_42_2 doi: 10.1021/nn1025274 – ident: e_1_2_6_22_2 doi: 10.1016/j.elecom.2010.01.025 – ident: e_1_2_6_19_2 doi: 10.1002/adfm.201000900 – ident: e_1_2_6_27_2 doi: 10.1016/j.carbon.2007.02.034 – ident: e_1_2_6_7_2 doi: 10.1038/nnano.2010.8 – ident: e_1_2_6_20_2 doi: 10.1073/pnas.0905193106 – ident: e_1_2_6_52_2 doi: 10.1016/S0022-1139(01)00422-5 – ident: e_1_2_6_40_2 doi: 10.1038/nnano.2008.215 – ident: e_1_2_6_63_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_6_29_2 doi: 10.1021/nl072838r – ident: e_1_2_6_30_2 – ident: e_1_2_6_17_2 – ident: e_1_2_6_34_2 doi: 10.1021/nl101437p – ident: e_1_2_6_31_3 doi: 10.1002/anie.200901479 – ident: e_1_2_6_33_3 doi: 10.1002/anie.201000270 – ident: e_1_2_6_41_2 – ident: e_1_2_6_61_2 doi: 10.1038/nature05180 – ident: e_1_2_6_54_2 doi: 10.1103/PhysRevB.45.6883 – ident: e_1_2_6_32_2 doi: 10.1002/smll.200901968 – ident: e_1_2_6_5_2 doi: 10.1126/science.1150878 – ident: e_1_2_6_36_2 doi: 10.1002/adfm.200700797 – ident: e_1_2_6_47_2 – ident: e_1_2_6_38_2 doi: 10.1039/c0cc00799d – ident: e_1_2_6_55_2 – volume-title: Graphite Fluorides year: 1988 ident: e_1_2_6_50_2 – ident: e_1_2_6_37_2 doi: 10.1021/nn900546b – ident: e_1_2_6_26_2 doi: 10.1021/nn901221k – ident: e_1_2_6_6_2 doi: 10.1103/PhysRevLett.97.216803 – volume-title: Fluorine‐Carbon and Fluoride Carbon Materials year: 1995 ident: e_1_2_6_53_2 – ident: e_1_2_6_46_2 doi: 10.1007/s11249-008-9364-8 – ident: e_1_2_6_39_2 doi: 10.1039/B914763B – ident: e_1_2_6_23_2 doi: 10.1039/C0NR00588F – ident: e_1_2_6_33_4 doi: 10.1002/ange.201000270 – ident: e_1_2_6_25_2 doi: 10.1021/ja103169v – ident: e_1_2_6_56_2 doi: 10.1103/PhysRevLett.96.246401 – ident: e_1_2_6_65_2 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_6_43_2 doi: 10.1002/smll.201001401 – ident: e_1_2_6_12_2 doi: 10.1016/j.orgel.2008.01.002 – ident: e_1_2_6_2_2 doi: 10.1126/science.1158877 – ident: e_1_2_6_14_2 doi: 10.1103/PhysRevB.81.205435 – ident: e_1_2_6_48_2 doi: 10.1016/j.solmat.2007.05.005 – ident: e_1_2_6_64_2 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_6_60_2 doi: 10.1038/nature07919 – ident: e_1_2_6_15_2 doi: 10.1103/PhysRevB.82.073403 – ident: e_1_2_6_51_2 doi: 10.1016/S0022-1139(02)00323-8 – ident: e_1_2_6_24_2 doi: 10.1038/nnano.2009.177 – ident: e_1_2_6_59_2 – ident: e_1_2_6_62_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_6_3_2 doi: 10.1126/science.1167130 – ident: e_1_2_6_4_2 – ident: e_1_2_6_1_2 – ident: e_1_2_6_11_2 doi: 10.1002/chem.200900596 |
SSID | ssj0009633 |
Score | 2.4039445 |
Snippet | The bandgap opening of graphene is extremely important for the expansion of the applications of graphene‐based materials into optoelectronics and photonics.... The bandgap opening of graphene is extremely important for the expansion of the applications of graphene-based materials into optoelectronics and photonics.... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8896 |
SubjectTerms | Chemistry density functional theory fluorine graphene ionic liquids Semiconductors |
Title | Facile Synthesis of Wide-Bandgap Fluorinated Graphene Semiconductors |
URI | https://api.istex.fr/ark:/67375/WNG-HDSR202J-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201100699 https://www.ncbi.nlm.nih.gov/pubmed/21714019 https://www.proquest.com/docview/1766612172 https://www.proquest.com/docview/1093489338 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIaPUFnAhvslpaAgIVildexkHC-hkI4q0UWHqt1ZvgVVLUk1mZEKKx6BZ-RJOCeZpAwCIcEysp3E99_28XcAXhiDEwHnPsnkpMIFShqSYuJlkhaVSl2V5ZbRBef3B5PpUbZ_kp_8dIu_50OMG27UM7rxmjq4se3OFTQU8_SpQ3ASbJdu8JHBFqmiwyt-FLau3pd8JhNisA7URsZ31pOvzUrXqYAvfyc51xVsNwWVt8EMP99bnpxtLxd22335hev4P7m7A7dW-jR-3Teou3At1Pfgxu7gFu4-lKVx-MZ49rlG7dietnFTxcenPnz_-u2Nqf1HcxGX50uy60MZ6-M9ImLjgBrPyAy_qYkv28zbB3BUvvuwO01WzhgSl0mpEhKWuQhMsco57jKLExtqoZSObnxqVSGswZW28gWGqpwHYyciSKWyQllWSPEQNuqmDo8hVp5J46qUiRCygBqFCVz15KnAoTa3ykeQDJWh3YpUTg4zznXPWOaaSkePpRPBqzH-Rc_o-GPMl13djtHM_Iws22Sujw_29PTt7JAzvq_LCLaGyterTt1qYmkScE3yCJ6PwVj8dMZi6tAsWzrQF8TzEUUEj_pGM36Mk7N5lNQR8K7q__KzmqAY49PmvyR6AjeHPXCWbsHGYr4MT1FELeyzrqP8AP2_EFs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHpT2US6H8NVAgSPyc0jpOso4PHKDbdPu3h26r9macxEFVS1JtdgXlxCPwKrwKj8CTMJO_ahEICakHjlGcxPaMPTOO_Q3Ac63REHCeOr7oZRiguMYJe6lw3DCTbpL5QczogPP-sDc48ndOgpM5-Naehan5EN2CG42Mar6mAU4L0utX1FBs1IeKwUm0Xdnsq9w1lx8xaitfb_dRxC84jzYPNwZOk1jASXwhpENOUuAZJlmWJDzxY5yk0a679BsidWMZerHGqFGmId6VATc67nlGSOmHMmah8PC9N2CB0ogTrr9_cEWsQn2us9f7wiHqa8uJZHx9tr4zdnCBRPrpd07urM9cGb3oFnxvu6ve63K2Np3Ea8nnX0iS_1V_3oalxgW339RjZhnmTH4HFjfazHd3IYp0gk2wR5c5usflaWkXmX18mpofX76-1Xn6Xl_Y0fmUti6ip57aWwT9Rpthj-ikQZETQrcYl_fg6FqacR_m8yI3K2DLlAmdZC7zjPENumHMw8AucD20JkEsUwucVvoqaWDslBPkXNUYaa5IGqqThgWvuvIXNYbkjyVfVsrUFdPjM9q8JwJ1PNxSg_7ogDO-oyILVlttU828VSrChRJTTnALnnW3sfvpN5LOTTEtac-CR8giL7TgQa2l3cfwSYrYsRa80rW_VFYR96O7evgvDz2FxcHh_p7a2x7uPoKb7ZI_c1dhfjKemsfoM07iJ9UoteHddavxT3XUanQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVgIuvB-BAkHicUqbOA_HBw7QJd22sEJdqvZmnNhBVUuy2uwKyomfwE_hr_AX-CXM5FUtAiEh9cAx8iO2Z-z5xh5_BnikFBoCxrQT8ChHB8UzThxp7nhxLrwsD8LUpQvOr0fRcC_YPggPluBbdxem4YfoN9xoZtTrNU3wic7XT0lDsU8fagpOItsVbVjljjn5iE5b9WxrgBJ-zFjy8u3G0GnfFXCygHPhEEYKfeMKN88ylgUprtFo1j06hdBeKmI_Veg0Ch1jqgiZUWnkGy5EEIvUjbmP9Z6DlSDCGgiG7Z4SVqE6N4_XB9wh0teOJtJl64vtXTCDKyTRT7_DuIuQubZ5yWX43o1WE-pytDafpWvZ51-IJP-n4bwCl1oAbj9vZsxVWDLFNbiw0b17dx2SRGXYA3t8UiA4rg4ru8zt_UNtfnz5-kIV-r2a2MnxnAIXEadre5Mov9Fi2GO6Z1AWRKBbTqsbsHcm3bgJy0VZmNtgC-1yleWe6xsTGARhro9uXej5aEvCVGgLnE74Mmup2OlFkGPZkEgzSdKQvTQseNrnnzQkJH_M-aTWpT6bmh5R6B4P5f5oUw4H413msm2ZWLDaKZtsV61KElkoMcpxZsHDPhmHnw6RVGHKeUURCz4RFvmxBbcaJe1_hiXJX8dWsFrV_tJYSawf_dedfyn0AM6_GSTy1dZo5y5c7Pb7XW8VlmfTubmHgHGW3q_nqA3vzlqLfwKbNWkj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Synthesis+of+Wide-Bandgap+Fluorinated+Graphene+Semiconductors&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Chang%2C+Haixin&rft.au=Cheng%2C+Jinsheng&rft.au=Liu%2C+Xuqing&rft.au=Gao%2C+Junfeng&rft.date=2011-08-01&rft.pub=WILEY-VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=17&rft.issue=32&rft.spage=8896&rft.epage=8903&rft_id=info:doi/10.1002%2Fchem.201100699&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_HDSR202J_F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |