Environmental factors and management practices controlling oxygen dynamics in agricultural irrigation ponds in a semiarid Mediterranean region: Implications for pond agricultural functions

A water quality study was carried out on 40 irrigation ponds located within the main greenhouse areas on the Almería coast, placing special emphasis on the factors controlling the oxygen dynamics, a relevant aspect with agricultural and environmental implications. Considering chemical, physical and...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 41; no. 6; pp. 1225 - 1234
Main Authors Bonachela, Santiago, Acuña, Rodrigo A., Casas, Jesús
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2007
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A water quality study was carried out on 40 irrigation ponds located within the main greenhouse areas on the Almería coast, placing special emphasis on the factors controlling the oxygen dynamics, a relevant aspect with agricultural and environmental implications. Considering chemical, physical and biological water characteristics, agricultural irrigation ponds were satisfactorily classified by cluster analysis in four groups. These were congruently arranged by principal components analysis along four main environmental gradients: trophic status, photosynthetic activity, water mineralisation and presence of submerged aquatic vegetation (SAV). Dissolved oxygen (DO) values differed highly among and within each of the four pond groups. DO dynamics was mainly depended on photosynthetic activity, and the environmental factors and management practices controlling it: seasonal and daily climatic changes, pond management (open vs. covered ponds and presence/absence of aquatic vegetation) and trophic status. Overall, different diurnal DO patterns were found between open and covered ponds. The former usually presented DO values above saturation and increasingly higher from early morning to mid-afternoon due to the photosynthetic activity of algae and macrophytic vegetation. In contrast, covered ponds showed relatively stable DO values during the diurnal period regardless of climatic conditions, with absolute values around or below saturation level. Globally, our results suggest that open ponds, with macrophytes concentrated in the deeper layer, can be an effective and sustainable management method of water oxygen enrichment.
Bibliography:http://dx.doi.org/10.1016/j.watres.2006.12.024
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2006.12.024