Enhancing interlayer bonding strength of FDM 3D printing technology by diode laser-assisted system

Fused deposition modeling (FDM) is the most widespread 3D printing technology. The primary reasons for this are its simplicity in manufacturing and low cost. The common issue of FDM is an anisotropic property of the extruded layer. Therefore, the mechanical strength of traditional machining methods...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 108; no. 1-2; pp. 603 - 611
Main Authors Sabyrov, Nurbol, Abilgaziyev, Anuar, Ali, Md. Hazrat
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fused deposition modeling (FDM) is the most widespread 3D printing technology. The primary reasons for this are its simplicity in manufacturing and low cost. The common issue of FDM is an anisotropic property of the extruded layer. Therefore, the mechanical strength of traditional machining methods is significantly better than FDM-fabricated parts. Implementation of diode laser (450 nm) with 5 W power for localized heating of the pre-deposition layer is proposed to overcome this problem. The laser power is controlled during the printing process. Thereby, layer interface temperature reached for critical point, where the bonding diffusion process between layers increased for the maximum level. The effect of the pre-deposing heating method is presented at different laser power values and printing speed. Tensile test results on PLA (polylactic acid) plastic specimen indicate a 10.16% increase in ultimate tensile strength at 2.84 W power of the laser. However, crack and hole formations indicate a negative result of intensive laser heating employment.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-020-05455-y