Activation of phospholipase D by protein kinase C. Evidence for a phosphorylation-independent mechanism

The role of protein kinase C (PKC) in the regulation of phosphatidylcholine-hydrolyzing phospholipase D (PLD) was investigated. In membranes from Chinese hamster lung fibroblasts that had been incubated with [14C]choline to label endogenous phosphatidylcholine, phorbol 12-myristate 13-acetate (PMA)...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 267; no. 11; pp. 7199 - 7202
Main Authors Conricode, K M, Brewer, K A, Exton, J H
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 15.04.1992
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The role of protein kinase C (PKC) in the regulation of phosphatidylcholine-hydrolyzing phospholipase D (PLD) was investigated. In membranes from Chinese hamster lung fibroblasts that had been incubated with [14C]choline to label endogenous phosphatidylcholine, phorbol 12-myristate 13-acetate (PMA) failed to stimulate production of [14C]choline. However, stimulation was observed if fibroblast cytosolic fraction or PKC partially purified from this fraction was added. When incubated with membranes in the presence of PMA, pure PKC from rat brain stimulated [14C]choline production in a concentration-dependent manner, with a maximal 2-3-fold effect. PMA similarly stimulated [14C]phosphatidylpropanol formation from propanol using membranes from [14C]myristic acid-prelabeled cells, confirming the activation of PLD. None of the effects described required exogenous ATP. To probe the role of phosphorylation in the PKC effect, we included high concentrations of apyrase in the assay. This ATPase had no effect on the ability of PKC to activate PLD, but under exactly the same conditions, it eliminated autophosphorylation of PKC. The results provide conclusive evidence for the involvement of PKC in the activation of PLD and suggest that ATP-dependent phosphorylation is not required.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(18)42502-1