Simulation Analysis and Study of Gait Stability Related to Motion Joints

Gait stability in exercise is an inevitable and vexing problem in mechanics, artificial intelligence, sports, and rehabilitation medicine research. With the rapid development and popularization of science and technology, it becomes a reality for researchers to obtain large-scale human motion data se...

Full description

Saved in:
Bibliographic Details
Published inBioMed research international Vol. 2022; no. 1; p. 8417089
Main Authors Lei, Yuanyuan, Yang, Fang
Format Journal Article
LanguageEnglish
Published United States Hindawi 2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gait stability in exercise is an inevitable and vexing problem in mechanics, artificial intelligence, sports, and rehabilitation medicine research. With the rapid development and popularization of science and technology, it becomes a reality for researchers to obtain large-scale human motion data sets in real time with higher efficiency. However, at present, the analysis of gait stability of moving joints is still based on image recognition technology, which is ten times less accurate and inefficient. In this paper, Vicon 3D motion capture system, dynamometer, and surface electromyography system were used to obtain the parameters of the lower limbs of the subjects. Using Anywhere modeling and simulation system, simulation experiments were carried out, and the reaction force data of lower limb joints under two environments were obtained. The gait characteristics of human gait were analyzed from the angle of internal and external adjustment mechanism. Combining one-way ANOVA and incremental occupancy rate, the adjustment process of gait stability is described comprehensively. The findings of this study can provide a theoretical basis for the research of lower limb con-assistive devices and can guide the design and development of bipedal anthropomorphic robots.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Sandip K Mishra
ISSN:2314-6133
2314-6141
2314-6141
DOI:10.1155/2022/8417089