CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP

DBP, the founding member of the PAR leucine zipper transcription factor family, is expressed according to a robust daily rhythm in the suprachiasmatic nucleus and several peripheral tissues. Previous studies with mice deleted for the Dbp gene have established that DBP participates in the regulation...

Full description

Saved in:
Bibliographic Details
Published inGenes & development Vol. 14; no. 6; pp. 679 - 689
Main Authors Ripperger, J A, Shearman, L P, Reppert, S M, Schibler, U
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 15.03.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:DBP, the founding member of the PAR leucine zipper transcription factor family, is expressed according to a robust daily rhythm in the suprachiasmatic nucleus and several peripheral tissues. Previous studies with mice deleted for the Dbp gene have established that DBP participates in the regulation of several clock outputs, including locomotor activity, sleep distribution, and liver gene expression. Here we present evidence that circadian Dbp transcription requires the basic helix-loop-helix-PAS protein CLOCK, an essential component of the negative-feedback circuitry generating circadian oscillations in mammals and fruit flies. Genetic and biochemical experiments suggest that CLOCK regulates Dbp expression by binding to E-box motifs within putative enhancer regions located in the first and second introns. Similar E-box motifs have been found previously in the promoter sequence of the murine clock gene mPeriod1. Hence, the same molecular mechanisms generating circadian oscillations in the expression of clock genes may directly control the rhythmic transcription of clock output regulators such as Dbp.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Corresponding author.
ISSN:0890-9369
1549-5477
DOI:10.1101/gad.14.6.679