White-matter relaxation time and myelin water fraction differences in young adults with autism

Increasing evidence suggests that autism is associated with abnormal white-matter (WM) anatomy and impaired brain 'connectivity'. While myelin plays a critical role in synchronized brain communication, its aetiological role in autistic symptoms has only been indirectly addressed by WM volu...

Full description

Saved in:
Bibliographic Details
Published inPsychological medicine Vol. 45; no. 4; pp. 795 - 805
Main Authors Deoni, S. C. L., Zinkstok, J. R., Daly, E., Ecker, C., Williams, S. C. R., Murphy, D. G. M.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.03.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Increasing evidence suggests that autism is associated with abnormal white-matter (WM) anatomy and impaired brain 'connectivity'. While myelin plays a critical role in synchronized brain communication, its aetiological role in autistic symptoms has only been indirectly addressed by WM volumetric, relaxometry and diffusion tensor imaging studies. A potentially more specific measure of myelin content, termed myelin water fraction (MWF), could provide improved sensitivity to myelin alteration in autism. We performed a cross-sectional imaging study that compared 14 individuals with autism and 14 age- and IQ-matched controls. T 1 relaxation times (T 1), T 2 relaxation times (T 2) and MWF values were compared between autistic subjects, diagnosed using the Autism Diagnostic Interview - Revised (ADI-R), with current symptoms assessed using the Autism Diagnostic Observation Schedule (ADOS) and typical healthy controls. Correlations between T 1, T 2 and MWF values with clinical measures [ADI-R, ADOS, and the Autism Quotient (AQ)] were also assessed. Individuals with autism showed widespread WM T 1 and MWF differences compared to typical controls. Within autistic individuals, worse current social interaction skill as measured by the ADOS was related to reduced MWF although not T 1. No significant differences or correlations with symptoms were observed with respect to T 2. Autistic individuals have significantly lower global MWF and higher T 1, suggesting widespread alteration in tissue microstructure and biochemistry. Areas of difference, including thalamic projections, cerebellum and cingulum, have previously been implicated in the disorder; however, this is the first study to specifically indicate myelin alteration in these regions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0033-2917
1469-8978
1469-8978
DOI:10.1017/S0033291714001858