Axion Dark Matter Experiment: Detailed design and operations

Axion dark matter experiment ultra-low noise haloscope technology has enabled the successful completion of two science runs (1A and 1B) that looked for dark matter axions in the 2.66–3.1 μeV mass range with Dine–Fischler–Srednicki–Zhitnisky sensitivity [Du et al., Phys. Rev. Lett. 120, 151301 (2018)...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 92; no. 12; pp. 124502 - 124520
Main Authors Khatiwada, R., Bowring, D., Chou, A. S., Sonnenschein, A., Wester, W., Mitchell, D. V., Braine, T., Bartram, C., Cervantes, R., Crisosto, N., Du, N., Rosenberg, L. J., Rybka, G., Yang, J., Will, D., Kimes, S., Carosi, G., Woollett, N., Durham, S., Duffy, L. D., Bradley, R., Boutan, C., Jones, M., LaRoque, B. H., Oblath, N. S., Taubman, M. S., Tedeschi, J., Clarke, John, Dove, A., Hashim, A., Siddiqi, I., Stevenson, N., Eddins, A., O’Kelley, S. R., Nawaz, S., Agrawal, A., Dixit, A. V., Gleason, J. R., Jois, S., Sikivie, P., Sullivan, N. S., Tanner, D. B., Solomon, J. A., Lentz, E., Daw, E. J., Perry, M. G., Buckley, J. H., Harrington, P. M., Henriksen, E. A., Murch, K. W., Hilton, G. C.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Axion dark matter experiment ultra-low noise haloscope technology has enabled the successful completion of two science runs (1A and 1B) that looked for dark matter axions in the 2.66–3.1 μeV mass range with Dine–Fischler–Srednicki–Zhitnisky sensitivity [Du et al., Phys. Rev. Lett. 120, 151301 (2018) and Braine et al., Phys. Rev. Lett. 124, 101303 (2020)]. Therefore, it is the most sensitive axion search experiment to date in this mass range. We discuss the technological advances made in the last several years to achieve this sensitivity, which includes the implementation of components, such as the state-of-the-art quantum-noise-limited amplifiers and a dilution refrigerator. Furthermore, we demonstrate the use of a frequency tunable microstrip superconducting quantum interference device amplifier in run 1A, and a Josephson parametric amplifier in run 1B, along with novel analysis tools that characterize the system noise temperature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
SC0009723; SC0010296; SC0010280; FG02-97ER41029; FG02-96ER40956; AC52- 07NA27344; C03-76SF00098; SC0009800; SC00116655; AC02-07CH11359
ISSN:0034-6748
1089-7623
1089-7623
DOI:10.1063/5.0037857