Automated Arrhythmia Detection Based on RR Intervals
Abnormal heart rhythms, also known as arrhythmias, can be life-threatening. AFIB and AFL are examples of arrhythmia that affect a growing number of patients. This paper describes a method that can support clinicians during arrhythmia diagnosis. We propose a deep learning algorithm to discriminate AF...
Saved in:
Published in | Diagnostics (Basel) Vol. 11; no. 8; p. 1446 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
10.08.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abnormal heart rhythms, also known as arrhythmias, can be life-threatening. AFIB and AFL are examples of arrhythmia that affect a growing number of patients. This paper describes a method that can support clinicians during arrhythmia diagnosis. We propose a deep learning algorithm to discriminate AFIB, AFL, and NSR RR interval signals. The algorithm was designed with data from 4051 subjects. With 10-fold cross-validation, the algorithm achieved the following results: ACC = 99.98%, SEN = 100.00%, and SPE = 99.94%. These results are significant because they show that it is possible to automate arrhythmia detection in RR interval signals. Such a detection method makes economic sense because RR interval signals are cost-effective to measure, communicate, and process. Having such a cost-effective solution might lead to widespread long-term monitoring, which can help detecting arrhythmia earlier. Detection can lead to treatment, which improves outcomes for patients. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2075-4418 2075-4418 |
DOI: | 10.3390/diagnostics11081446 |