Automated Arrhythmia Detection Based on RR Intervals

Abnormal heart rhythms, also known as arrhythmias, can be life-threatening. AFIB and AFL are examples of arrhythmia that affect a growing number of patients. This paper describes a method that can support clinicians during arrhythmia diagnosis. We propose a deep learning algorithm to discriminate AF...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 11; no. 8; p. 1446
Main Authors Faust, Oliver, Kareem, Murtadha, Ali, Ali, Ciaccio, Edward J., Acharya, U. Rajendra
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 10.08.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abnormal heart rhythms, also known as arrhythmias, can be life-threatening. AFIB and AFL are examples of arrhythmia that affect a growing number of patients. This paper describes a method that can support clinicians during arrhythmia diagnosis. We propose a deep learning algorithm to discriminate AFIB, AFL, and NSR RR interval signals. The algorithm was designed with data from 4051 subjects. With 10-fold cross-validation, the algorithm achieved the following results: ACC = 99.98%, SEN = 100.00%, and SPE = 99.94%. These results are significant because they show that it is possible to automate arrhythmia detection in RR interval signals. Such a detection method makes economic sense because RR interval signals are cost-effective to measure, communicate, and process. Having such a cost-effective solution might lead to widespread long-term monitoring, which can help detecting arrhythmia earlier. Detection can lead to treatment, which improves outcomes for patients.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2075-4418
2075-4418
DOI:10.3390/diagnostics11081446