Effect of Glycerol on Fosfomycin Activity against Escherichia coli
Fosfomycin is an antimicrobial that inhibits the biosynthesis of peptidoglycan by entering the bacteria through two channels (UhpT and GlpT). Glycerol is clinically used as a treatment for elevated intracranial pressure and induces the expression of glpT in Escherichia coli. Glycerol might offer syn...
Saved in:
Published in | Antibiotics (Basel) Vol. 11; no. 11; p. 1612 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
12.11.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fosfomycin is an antimicrobial that inhibits the biosynthesis of peptidoglycan by entering the bacteria through two channels (UhpT and GlpT). Glycerol is clinically used as a treatment for elevated intracranial pressure and induces the expression of glpT in Escherichia coli. Glycerol might offer synergistic activity by increasing fosfomycin uptake. The present study evaluates the use of glycerol at physiological concentrations in combination with fosfomycin against a collection of isogenic mutants of fosfomycin-related genes in E. coli strains. Induction of fosfomycin transporters, susceptibility tests, interaction assays, and time-kill assays were performed. Our results support the notion that glycerol allows activation of the GlpT transporter, but this induction is delayed over time and is not homogeneous across the bacterial population, leading to contradictory results regarding the enhancement of fosfomycin activity. The susceptibility assays showed an increase in fosfomycin activity with glycerol in the disk diffusion assay but not in the agar dilution or broth microdilution assays. Similarly, in the time-kill assays, the effect of glycerol was absent by the emergence of fosfomycin-resistant subpopulations. In conclusion, glycerol may not be a good candidate for use as an adjuvant with fosfomycin. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2079-6382 2079-6382 |
DOI: | 10.3390/antibiotics11111612 |