An Ultrahigh Mobility in Isomorphic Fluorobenzo[c][1,2,5]thiadiazole‐Based Polymers

To understand the effects rendered on the relevant basic physical properties and device function by controlling the regiochemistry of the cyclopenta[1,2‐b:5,4‐b′]dithiophene‐fluorobenzo[c][1,2,5]thiadiazole polymer (hereafter referred to as the CDT‐FBT polymer), two polymers, the regiorandom polymer...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 57; no. 41; pp. 13629 - 13634
Main Authors Lee, Junghoon, Kang, So‐Huei, Lee, Sang Myeon, Lee, Kyu Cheol, Yang, Heesoo, Cho, Yongjoon, Han, Daehee, Li, Yongfang, Lee, Byoung Hoon, Yang, Changduk
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 08.10.2018
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To understand the effects rendered on the relevant basic physical properties and device function by controlling the regiochemistry of the cyclopenta[1,2‐b:5,4‐b′]dithiophene‐fluorobenzo[c][1,2,5]thiadiazole polymer (hereafter referred to as the CDT‐FBT polymer), two polymers, the regiorandom polymer (RA) and regioregular version (RR), respectively, are synthesized and characterized. In addition, an efficient route for synthesizing a key monomer for RR using various synthesis scope and optimizing the reaction conditions is discussed. Although RA exhibits optical, electrochemical, and morphological properties similar to RR, it shows better field‐effect transistor (FET) performance. Surprisingly, by employing a capillarity‐mediated sandwich‐casting process on a nanogrooved substrate, an unprecedented mobility of 17.8 cm2 V−1 s−1 is obtained for RA‐based FETs; this mobility value is almost twofold greater than those of the corresponding RR‐based FETs. For the first time, this study challenges previously reported results in that high carrier mobility is related to the high degree of polymer order induced by the backbone regioregularity. Organic field‐effect transistors: Two polymers, a regiorandom polymer (RA) and a regioregular version (RR), have been synthesized and characterized. An unprecedented mobility of 17.8 cm2 V−1 s−1 was obtained for RA‐based field‐effect transistors (FETs). The high carrier mobility is related to the high degree of polymer order induced by backbone regioregularity.
Bibliography:These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201808098