Reconfigurable Bioinspired Framework Nucleic Acid Nanoplatform Dynamically Manipulated in Living Cells for Subcellular Imaging
In nature, the formation of spider silk fibers begins with dimerizing the pH‐sensitive N‐terminal domains of silk proteins (spidroins) upon lowering pH, and provides a natural masterpiece for programmable assembly. Inspired by the similarity of pH‐dependent dimerization behaviors, introduced here is...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 6; pp. 1648 - 1653 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
04.02.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In nature, the formation of spider silk fibers begins with dimerizing the pH‐sensitive N‐terminal domains of silk proteins (spidroins) upon lowering pH, and provides a natural masterpiece for programmable assembly. Inspired by the similarity of pH‐dependent dimerization behaviors, introduced here is an i‐motif‐guided model to mimic the initial step of spidroin assembly at the subcellular level. A framework nucleic acid (FNA) nanoplatform is designed using two tetrahedral DNA nanostructures (TDNs) with different branched vertexes carrying a bimolecular i‐motif and a split ATP aptamer. Once TDNs enter acidic lysosomes within living cells, they assemble into a heterodimeric architecture, thereby enabling the formation of a larger‐size framework and meanwhile subcellular imaging in response to endogenous ATP, which can be dynamically manipulated by adjusting intracellular pH and ATP levels with external drug stimuli.
Itsy bitsy spider: To mimic the self‐assembly manner of spider silk proteins, a reconfigurable bioinspired framework nucleic acid nanoplatform has been designed and is dynamically regulated within living cells for lysosome imaging. The dimerization of the DNA structures is pH‐dependent and they enable subcellular imaging in response to endogenous ATP. |
---|---|
AbstractList | In nature, the formation of spider silk fibers begins with dimerizing the pH-sensitive N-terminal domains of silk proteins (spidroins) upon lowering pH, and provides a natural masterpiece for programmable assembly. Inspired by the similarity of pH-dependent dimerization behaviors, introduced here is an i-motif-guided model to mimic the initial step of spidroin assembly at the subcellular level. A framework nucleic acid (FNA) nanoplatform is designed using two tetrahedral DNA nanostructures (TDNs) with different branched vertexes carrying a bimolecular i-motif and a split ATP aptamer. Once TDNs enter acidic lysosomes within living cells, they assemble into a heterodimeric architecture, thereby enabling the formation of a larger-size framework and meanwhile subcellular imaging in response to endogenous ATP, which can be dynamically manipulated by adjusting intracellular pH and ATP levels with external drug stimuli. In nature, the formation of spider silk fibers begins with dimerizing the pH‐sensitive N‐terminal domains of silk proteins (spidroins) upon lowering pH, and provides a natural masterpiece for programmable assembly. Inspired by the similarity of pH‐dependent dimerization behaviors, introduced here is an i‐motif‐guided model to mimic the initial step of spidroin assembly at the subcellular level. A framework nucleic acid (FNA) nanoplatform is designed using two tetrahedral DNA nanostructures (TDNs) with different branched vertexes carrying a bimolecular i‐motif and a split ATP aptamer. Once TDNs enter acidic lysosomes within living cells, they assemble into a heterodimeric architecture, thereby enabling the formation of a larger‐size framework and meanwhile subcellular imaging in response to endogenous ATP, which can be dynamically manipulated by adjusting intracellular pH and ATP levels with external drug stimuli. Itsy bitsy spider: To mimic the self‐assembly manner of spider silk proteins, a reconfigurable bioinspired framework nucleic acid nanoplatform has been designed and is dynamically regulated within living cells for lysosome imaging. The dimerization of the DNA structures is pH‐dependent and they enable subcellular imaging in response to endogenous ATP. In nature, the formation of spider silk fibers begins with dimerizing the pH-sensitive N-terminal domains of silk proteins (spidroins) upon lowering pH, and provides a natural masterpiece for programmable assembly. Inspired by the similarity of pH-dependent dimerization behaviors, introduced here is an i-motif-guided model to mimic the initial step of spidroin assembly at the subcellular level. A framework nucleic acid (FNA) nanoplatform is designed using two tetrahedral DNA nanostructures (TDNs) with different branched vertexes carrying a bimolecular i-motif and a split ATP aptamer. Once TDNs enter acidic lysosomes within living cells, they assemble into a heterodimeric architecture, thereby enabling the formation of a larger-size framework and meanwhile subcellular imaging in response to endogenous ATP, which can be dynamically manipulated by adjusting intracellular pH and ATP levels with external drug stimuli.In nature, the formation of spider silk fibers begins with dimerizing the pH-sensitive N-terminal domains of silk proteins (spidroins) upon lowering pH, and provides a natural masterpiece for programmable assembly. Inspired by the similarity of pH-dependent dimerization behaviors, introduced here is an i-motif-guided model to mimic the initial step of spidroin assembly at the subcellular level. A framework nucleic acid (FNA) nanoplatform is designed using two tetrahedral DNA nanostructures (TDNs) with different branched vertexes carrying a bimolecular i-motif and a split ATP aptamer. Once TDNs enter acidic lysosomes within living cells, they assemble into a heterodimeric architecture, thereby enabling the formation of a larger-size framework and meanwhile subcellular imaging in response to endogenous ATP, which can be dynamically manipulated by adjusting intracellular pH and ATP levels with external drug stimuli. |
Author | Zheng, Jiao Peng, Pai Li, Tao Du, Yi Wang, Huihui |
Author_xml | – sequence: 1 givenname: Pai orcidid: 0000-0002-9655-1047 surname: Peng fullname: Peng, Pai organization: University of Science and Technology of China – sequence: 2 givenname: Yi orcidid: 0000-0002-1025-6136 surname: Du fullname: Du, Yi organization: University of Science and Technology of China – sequence: 3 givenname: Jiao surname: Zheng fullname: Zheng, Jiao organization: University of Science and Technology of China – sequence: 4 givenname: Huihui surname: Wang fullname: Wang, Huihui organization: University of Science and Technology of China – sequence: 5 givenname: Tao orcidid: 0000-0002-9724-3812 surname: Li fullname: Li, Tao email: tlitao@ustc.edu.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30525284$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAURi1URB-wZYkssWGTwY_ETpbD0MJIwyBB95HjXI9cHDvYSavZ8NvxaPqQKiG88bXuOfYn33N04oMHhN5SsqCEsI_KW1gwQmual3yBzmjFaMGl5Ce5LjkvZF3RU3Se0k3m65qIV-iUk4pVrC7P0J8foIM3djdH1TnAn2ywPo02Qo-vohrgLsRfeDtrB1bjpbY93iofRqcmE-KAP--9GqxWzu3xtxxmnHMnu9bjjb21fodX4FzCGcY_507nQyYiXg9ql7uv0UujXII39_sFur66vF59LTbfv6xXy02hSylkoQkDDWWuq45TwrSsBFNGio6CKJuul7wve9qDEoJT1uiqU8aUpuGiE4byC_TheO0Yw-8Z0tQONh2yKA9hTi2jVdWQhtAD-v4ZehPm6HO4TElGhGCiztS7e2ruBujbMdpBxX378LEZWBwBHUNKEcwjQkl7mFx7mFz7OLkslM8EbSc12eCnqKz7t9YctTvrYP-fR9rldn355P4Fn6KuXw |
CitedBy_id | crossref_primary_10_1021_acs_analchem_1c00436 crossref_primary_10_1002_anie_202007962 crossref_primary_10_1021_acsami_0c15543 crossref_primary_10_1002_chem_202301300 crossref_primary_10_1021_accountsmr_3c00112 crossref_primary_10_1021_acsami_3c05574 crossref_primary_10_1021_acsabm_2c00128 crossref_primary_10_1021_acs_analchem_4c02723 crossref_primary_10_1007_s00604_023_06010_8 crossref_primary_10_1039_D3SC01960H crossref_primary_10_1002_smll_202007355 crossref_primary_10_1002_ange_202319908 crossref_primary_10_1016_j_reactfunctpolym_2024_105918 crossref_primary_10_1021_acsnano_0c04031 crossref_primary_10_1007_s40242_019_9249_4 crossref_primary_10_1016_j_bios_2022_114059 crossref_primary_10_1002_adma_202201731 crossref_primary_10_1002_smll_202106281 crossref_primary_10_1021_acs_analchem_4c05032 crossref_primary_10_1007_s41061_020_0283_y crossref_primary_10_3390_ijms22041803 crossref_primary_10_1002_ange_202106651 crossref_primary_10_1021_acs_analchem_1c03284 crossref_primary_10_1002_asia_202101315 crossref_primary_10_1002_ange_201914511 crossref_primary_10_1016_j_bios_2022_114183 crossref_primary_10_1093_nar_gkaa020 crossref_primary_10_1002_anie_202319908 crossref_primary_10_1016_j_nantod_2023_101808 crossref_primary_10_2139_ssrn_4022154 crossref_primary_10_1021_acsptsci_3c00190 crossref_primary_10_1007_s11426_021_1091_x crossref_primary_10_1039_D4SC04424J crossref_primary_10_1002_anie_202106651 crossref_primary_10_1016_j_snb_2024_137085 crossref_primary_10_1039_D5TB00116A crossref_primary_10_1002_ange_202007962 crossref_primary_10_1002_anie_201916432 crossref_primary_10_1021_acsnano_9b01324 crossref_primary_10_1039_D4NR04360J crossref_primary_10_1021_acsabm_9b01197 crossref_primary_10_1021_acsami_2c13735 crossref_primary_10_1002_adma_202302972 crossref_primary_10_1021_acsnano_0c03362 crossref_primary_10_1007_s12274_021_3869_y crossref_primary_10_3389_fnano_2020_574328 crossref_primary_10_1002_smll_202200983 crossref_primary_10_1039_D4BM00955J crossref_primary_10_1002_cjoc_202000753 crossref_primary_10_1039_D4TB01883D crossref_primary_10_1002_smll_202205909 crossref_primary_10_1021_acsami_0c13806 crossref_primary_10_1039_D2CS00317A crossref_primary_10_1021_acs_nanolett_9b03606 crossref_primary_10_1002_ange_201916432 crossref_primary_10_1021_acs_analchem_0c01612 crossref_primary_10_1039_D0AN00101E crossref_primary_10_1016_j_aca_2024_343237 crossref_primary_10_1021_acsami_3c01611 crossref_primary_10_1002_adsr_202200102 crossref_primary_10_1002_jmr_2829 crossref_primary_10_1039_D2CC06017E crossref_primary_10_1039_D0AY00105H crossref_primary_10_1039_D3MH00592E crossref_primary_10_1002_adma_202007738 crossref_primary_10_1039_D2SC07095B crossref_primary_10_1016_j_asems_2024_100098 crossref_primary_10_1002_anie_201914511 crossref_primary_10_1021_acs_analchem_1c01453 crossref_primary_10_1021_acsnano_4c16669 crossref_primary_10_1021_acsbiomaterials_4c01339 crossref_primary_10_1039_D3AN01871G crossref_primary_10_1021_acs_analchem_9b05304 crossref_primary_10_1021_acs_analchem_1c02829 crossref_primary_10_1021_jasms_2c00137 crossref_primary_10_1021_acs_analchem_3c01117 crossref_primary_10_1039_D3SC03989G crossref_primary_10_1021_acs_chemrev_0c01332 crossref_primary_10_1021_acs_nanolett_2c04658 crossref_primary_10_1039_D1SC04229G crossref_primary_10_1166_jbn_2022_3407 crossref_primary_10_1038_s41427_021_00309_9 crossref_primary_10_1002_advs_202100328 crossref_primary_10_1016_j_microc_2023_108779 crossref_primary_10_1016_j_talanta_2019_120287 crossref_primary_10_2116_analsci_19P455 crossref_primary_10_1002_ange_202115561 crossref_primary_10_1002_advs_202000557 crossref_primary_10_1038_s41929_020_0433_1 crossref_primary_10_1021_acs_analchem_9b03659 crossref_primary_10_1016_j_mattod_2022_12_003 crossref_primary_10_1021_acs_analchem_2c05200 crossref_primary_10_1039_D2RA05006D crossref_primary_10_1039_C9QM00779B crossref_primary_10_1002_anie_202115561 crossref_primary_10_1016_j_bios_2022_114231 crossref_primary_10_1021_acs_analchem_9b03420 crossref_primary_10_1016_j_isci_2023_106620 crossref_primary_10_1002_smll_202204108 crossref_primary_10_1021_acsami_2c20504 crossref_primary_10_1021_jacs_2c00823 crossref_primary_10_1016_j_trac_2023_117303 crossref_primary_10_1016_j_cej_2023_143494 crossref_primary_10_1021_acsnano_9b06029 crossref_primary_10_1039_C9BM00746F |
Cites_doi | 10.1038/nature06907 10.1146/annurev.bi.55.070186.003311 10.1038/ncb1620 10.1093/nar/gkx202 10.1002/ange.201202533 10.1002/ange.201003795 10.1083/jcb.9.4.773 10.1002/ange.201403236 10.1002/ange.201502315 10.1021/nl402873y 10.1002/ange.201411383 10.1021/acs.analchem.5b01527 10.1002/ange.201803965 10.1038/nmat974 10.1016/j.biochi.2007.07.026 10.1038/s41467-017-01157-4 10.1038/nrm2217 10.1038/ncomms4364 10.1002/anie.201202533 10.1038/nature08729 10.1158/0008-5472.CAN-05-4162 10.1016/S0305-7372(03)00106-3 10.1002/anie.201403236 10.1021/nn2005574 10.1002/anie.201411383 10.1146/annurev-anchem-061417-010007 10.1152/physrev.1981.61.2.296 10.1021/nl100169p 10.1073/pnas.0904764106 10.1056/NEJM197311152892007 10.1002/ange.201400323 10.1002/anie.200902538 10.1021/acsnano.7b00725 10.1002/anie.201410720 10.1016/j.bbamem.2008.11.018 10.1002/anie.201802701 10.1002/anie.200352402 10.1002/anie.201400323 10.1016/S0161-813X(02)00099-2 10.1039/C8CC00440D 10.1002/anie.201003795 10.1002/ange.200902538 10.1038/s41467-018-05904-z 10.1021/ar500073a 10.1038/nnano.2009.83 10.1021/jacs.7b11311 10.1126/science.1120367 10.1038/ncomms5940 10.1084/jem.185.8.1481 10.1002/ange.200352402 10.1124/pr.56.4.5 10.1021/acssensors.8b00257 10.1021/nn800727x 10.1126/science.1065780 10.1038/cr.2012.10 10.1021/ja202639m 10.1021/ja3118224 10.1038/ncomms1340 10.1002/anie.201502315 10.1038/235050a0 10.1021/acs.analchem.7b02763 10.1021/ja903768f 10.1038/89335 10.1038/nature08962 10.1002/ange.201410720 10.1007/978-1-61779-080-5_20 10.1021/acsnano.7b06200 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201811117 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 1653 |
ExternalDocumentID | 30525284 10_1002_anie_201811117 ANIE201811117 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21874124; 21575133 – fundername: Recruitment Program of Global Experts – fundername: National Key Research & Development Program funderid: 2016YFA0201300 – fundername: National Natural Science Foundation of China grantid: 21874124 – fundername: National Key Research & Development Program grantid: 2016YFA0201300 – fundername: National Natural Science Foundation of China grantid: 21575133 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4767-c02ece44765b3102c7562af76b1e649bd73d4d1dea663129c5baff4f936b6f13 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 16:12:41 EDT 2025 Fri Jul 25 12:00:10 EDT 2025 Wed Feb 19 02:30:39 EST 2025 Thu Apr 24 23:09:42 EDT 2025 Tue Jul 01 02:26:39 EDT 2025 Wed Jan 22 17:03:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | self-assembly nucleic acids nanostructures supramolecular chemistry DNA |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4767-c02ece44765b3102c7562af76b1e649bd73d4d1dea663129c5baff4f936b6f13 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1025-6136 0000-0002-9724-3812 0000-0002-9655-1047 |
PMID | 30525284 |
PQID | 2172066268 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2155909011 proquest_journals_2172066268 pubmed_primary_30525284 crossref_primary_10_1002_anie_201811117 crossref_citationtrail_10_1002_anie_201811117 wiley_primary_10_1002_anie_201811117_ANIE201811117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 4, 2019 |
PublicationDateYYYYMMDD | 2019-02-04 |
PublicationDate_xml | – month: 02 year: 2019 text: February 4, 2019 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2010; 10 2017; 8 2009 2009; 48 121 2010; 465 2017; 45 2017; 89 2010; 463 2018; 9 2018; 3 2014; 5 2013; 13 2006; 66 1997; 185 2018 2018; 57 130 2012 2012; 51 124 2015; 87 2001; 19 2007; 8 2003; 2 2007; 9 2015 2015; 54 127 1961; 9 2012; 22 2011; 731 2009; 1788 1973; 289 2011; 2 2018; 140 2005; 310 2002; 295 1986; 55 2014; 47 2003 2003; 42 115 2009; 131 1981; 61 2011; 5 2011; 133 1972; 235 2017; 11 2002; 23 2004; 56 2018 2013; 135 2011 2011; 50 123 2003; 29 2009; 4 2009; 3 2018; 12 2008; 453 2018; 11 2018; 54 2007; 89 2009; 106 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_22_3 e_1_2_2_24_1 e_1_2_2_49_1 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_1 e_1_2_2_62_1 e_1_2_2_64_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_8_1 e_1_2_2_64_3 e_1_2_2_66_1 e_1_2_2_45_2 e_1_2_2_26_1 e_1_2_2_68_1 e_1_2_2_60_2 e_1_2_2_36_2 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_59_1 e_1_2_2_11_2 e_1_2_2_74_2 e_1_2_2_19_3 e_1_2_2_30_1 e_1_2_2_51_1 e_1_2_2_74_3 e_1_2_2_19_2 e_1_2_2_53_2 e_1_2_2_32_2 e_1_2_2_55_2 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_15_2 e_1_2_2_70_1 e_1_2_2_72_1 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_61_2 e_1_2_2_65_1 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_63_2 e_1_2_2_9_1 e_1_2_2_67_1 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_46_1 e_1_2_2_69_1 e_1_2_2_9_2 Hu Q. (e_1_2_2_57_1) 2018 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_37_3 e_1_2_2_39_2 e_1_2_2_10_1 e_1_2_2_50_2 e_1_2_2_75_2 e_1_2_2_31_1 e_1_2_2_54_1 e_1_2_2_73_1 e_1_2_2_18_2 e_1_2_2_52_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_14_3 e_1_2_2_35_1 e_1_2_2_58_1 e_1_2_2_75_3 e_1_2_2_14_2 e_1_2_2_56_2 e_1_2_2_50_1 e_1_2_2_71_1 |
References_xml | – volume: 22 start-page: 1022 year: 2012 end-page: 1033 publication-title: Cell Res. – volume: 89 start-page: 1562 year: 2007 end-page: 1572 publication-title: Biochimie – year: 2018 publication-title: Chem. Rev. – volume: 3 start-page: 425 year: 2009 end-page: 433 publication-title: ACS Nano – volume: 61 start-page: 296 year: 1981 end-page: 434 publication-title: Physiol. Rev. – volume: 54 127 start-page: 3957 4029 year: 2015 2015 end-page: 3961 4033 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 945 year: 2007 end-page: 953 publication-title: Nat. Cell Biol. – volume: 4 start-page: 325 year: 2009 end-page: 330 publication-title: Nat. Nanotechnol. – volume: 135 start-page: 1593 year: 2013 end-page: 1599 publication-title: J. Am. Chem. Soc. – volume: 48 121 start-page: 7660 7796 year: 2009 2009 end-page: 7663 7799 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 42 115 start-page: 5734 5912 year: 2003 2003 end-page: 5736 5914 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 7131 6387 year: 2018 2018 end-page: 7135 6391 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 start-page: 3520 year: 2018 end-page: 3523 publication-title: Chem. Commun. – volume: 463 start-page: 640 year: 2010 end-page: 643 publication-title: Nature – volume: 56 start-page: 633 year: 2004 end-page: 654 publication-title: Pharmacol. Rev. – volume: 12 start-page: 263 year: 2018 end-page: 271 publication-title: ACS Nano – volume: 51 124 start-page: 6432 6538 year: 2012 2012 end-page: 6435 6541 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 3579 year: 2018 publication-title: Nat. Commun. – volume: 8 start-page: 622 year: 2007 end-page: 632 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 140 start-page: 4186 year: 2018 end-page: 4190 publication-title: J. Am. Chem. Soc. – volume: 453 start-page: 788 year: 2008 end-page: 792 publication-title: Nature – volume: 295 start-page: 472 year: 2002 end-page: 476 publication-title: Science – volume: 11 start-page: 4060 year: 2017 end-page: 4066 publication-title: ACS Nano – volume: 13 start-page: 4920 year: 2013 end-page: 4924 publication-title: Nano Lett. – volume: 5 start-page: 4940 year: 2014 publication-title: Nat. Commun. – volume: 89 start-page: 10941 year: 2017 end-page: 10947 publication-title: Anal. Chem. – volume: 66 start-page: 4880 year: 2006 end-page: 4887 publication-title: Cancer Res. – volume: 19 start-page: 573 year: 2001 end-page: 577 publication-title: Nat. Biotechnol. – volume: 731 start-page: 237 year: 2011 end-page: 245 publication-title: Methods Mol. Biol. – volume: 10 start-page: 1393 year: 2010 end-page: 1397 publication-title: Nano Lett. – volume: 289 start-page: 1074 year: 1973 end-page: 1076 publication-title: N. Engl. J. Med. – volume: 3 start-page: 903 year: 2018 end-page: 919 publication-title: ACS Sens. – volume: 235 start-page: 50 year: 1972 end-page: 52 publication-title: Nature – volume: 106 start-page: 15651 year: 2009 end-page: 15656 publication-title: Proc. Natl. Acad. Sci. USA – volume: 87 start-page: 8724 year: 2015 end-page: 8731 publication-title: Anal. Chem. – volume: 47 start-page: 1853 year: 2014 end-page: 1860 publication-title: Acc. Chem. Res. – volume: 465 start-page: 236 year: 2010 end-page: 238 publication-title: Nature – volume: 11 start-page: 171 year: 2018 end-page: 195 publication-title: Annu. Rev. Anal. Chem. – volume: 9 start-page: 773 year: 1961 end-page: 784 publication-title: J. Biophys. Biochem. Cytol. – volume: 2 start-page: 668 year: 2003 end-page: 671 publication-title: Nat. Mater. – volume: 53 126 start-page: 5821 5931 year: 2014 2014 end-page: 5826 5936 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 2151 2179 year: 2015 2015 end-page: 2155 2183 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 185 start-page: 1481 year: 1997 end-page: 1486 publication-title: J. Exp. Med. – volume: 5 start-page: 5427 year: 2011 end-page: 5432 publication-title: ACS Nano – volume: 133 start-page: 11597 year: 2011 end-page: 11604 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 7745 7879 year: 2014 2014 end-page: 7750 7884 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 7693 7803 year: 2015 2015 end-page: 7697 7808 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1788 start-page: 470 year: 2009 end-page: 476 publication-title: Biochim. Biophys. Acta Biomembr. – volume: 55 start-page: 663 year: 1986 end-page: 700 publication-title: Annu. Rev. Biochem. – volume: 50 123 start-page: 310 324 year: 2011 2011 end-page: 313 328 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 310 start-page: 1661 year: 2005 end-page: 1665 publication-title: Science – volume: 131 start-page: 13093 year: 2009 end-page: 13098 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 487 year: 2002 end-page: 502 publication-title: NeuroToxicology – volume: 8 start-page: 1080 year: 2017 publication-title: Nat. Commun. – volume: 2 start-page: 340 year: 2011 publication-title: Nat. Commun. – volume: 5 start-page: 3364 year: 2014 publication-title: Nat. Commun. – volume: 45 start-page: 4306 year: 2017 end-page: 4314 publication-title: Nucleic Acids Res. – volume: 29 start-page: 541 year: 2003 end-page: 549 publication-title: Cancer Treat. Rev. – ident: e_1_2_2_58_1 doi: 10.1038/nature06907 – ident: e_1_2_2_29_2 doi: 10.1146/annurev.bi.55.070186.003311 – ident: e_1_2_2_32_2 doi: 10.1038/ncb1620 – ident: e_1_2_2_46_1 – ident: e_1_2_2_12_2 doi: 10.1093/nar/gkx202 – ident: e_1_2_2_64_3 doi: 10.1002/ange.201202533 – ident: e_1_2_2_9_2 doi: 10.1002/ange.201003795 – ident: e_1_2_2_72_1 doi: 10.1083/jcb.9.4.773 – ident: e_1_2_2_54_1 – ident: e_1_2_2_24_2 doi: 10.1002/ange.201403236 – ident: e_1_2_2_38_1 – ident: e_1_2_2_37_3 doi: 10.1002/ange.201502315 – ident: e_1_2_2_40_2 doi: 10.1021/nl402873y – ident: e_1_2_2_62_1 – ident: e_1_2_2_31_1 – ident: e_1_2_2_75_3 doi: 10.1002/ange.201411383 – ident: e_1_2_2_43_2 doi: 10.1021/acs.analchem.5b01527 – ident: e_1_2_2_19_3 doi: 10.1002/ange.201803965 – ident: e_1_2_2_60_2 doi: 10.1038/nmat974 – ident: e_1_2_2_30_1 doi: 10.1016/j.biochi.2007.07.026 – ident: e_1_2_2_5_2 doi: 10.1038/s41467-017-01157-4 – ident: e_1_2_2_28_2 doi: 10.1038/nrm2217 – ident: e_1_2_2_4_1 – ident: e_1_2_2_55_2 doi: 10.1038/ncomms4364 – ident: e_1_2_2_64_2 doi: 10.1002/anie.201202533 – ident: e_1_2_2_7_1 doi: 10.1038/nature08729 – ident: e_1_2_2_44_2 doi: 10.1158/0008-5472.CAN-05-4162 – ident: e_1_2_2_68_1 doi: 10.1016/S0305-7372(03)00106-3 – ident: e_1_2_2_24_1 doi: 10.1002/anie.201403236 – ident: e_1_2_2_17_1 – ident: e_1_2_2_25_1 doi: 10.1021/nn2005574 – ident: e_1_2_2_41_1 – ident: e_1_2_2_75_2 doi: 10.1002/anie.201411383 – ident: e_1_2_2_18_2 doi: 10.1146/annurev-anchem-061417-010007 – ident: e_1_2_2_63_2 doi: 10.1152/physrev.1981.61.2.296 – ident: e_1_2_2_39_2 doi: 10.1021/nl100169p – ident: e_1_2_2_65_1 doi: 10.1073/pnas.0904764106 – ident: e_1_2_2_71_1 doi: 10.1056/NEJM197311152892007 – ident: e_1_2_2_22_3 doi: 10.1002/ange.201400323 – ident: e_1_2_2_74_2 doi: 10.1002/anie.200902538 – ident: e_1_2_2_48_2 doi: 10.1021/acsnano.7b00725 – ident: e_1_2_2_50_1 doi: 10.1002/anie.201410720 – ident: e_1_2_2_1_1 – ident: e_1_2_2_51_1 – year: 2018 ident: e_1_2_2_57_1 publication-title: Chem. Rev. – ident: e_1_2_2_70_1 doi: 10.1016/j.bbamem.2008.11.018 – ident: e_1_2_2_19_2 doi: 10.1002/anie.201802701 – ident: e_1_2_2_35_1 – ident: e_1_2_2_14_2 doi: 10.1002/anie.200352402 – ident: e_1_2_2_22_2 doi: 10.1002/anie.201400323 – ident: e_1_2_2_67_1 doi: 10.1016/S0161-813X(02)00099-2 – ident: e_1_2_2_61_2 doi: 10.1039/C8CC00440D – ident: e_1_2_2_73_1 – ident: e_1_2_2_9_1 doi: 10.1002/anie.201003795 – ident: e_1_2_2_74_3 doi: 10.1002/ange.200902538 – ident: e_1_2_2_6_2 doi: 10.1038/s41467-018-05904-z – ident: e_1_2_2_15_2 doi: 10.1021/ar500073a – ident: e_1_2_2_26_1 – ident: e_1_2_2_27_2 doi: 10.1038/nnano.2009.83 – ident: e_1_2_2_53_2 doi: 10.1021/jacs.7b11311 – ident: e_1_2_2_23_2 doi: 10.1126/science.1120367 – ident: e_1_2_2_34_1 doi: 10.1038/ncomms5940 – ident: e_1_2_2_56_2 doi: 10.1084/jem.185.8.1481 – ident: e_1_2_2_14_3 doi: 10.1002/ange.200352402 – ident: e_1_2_2_66_1 doi: 10.1124/pr.56.4.5 – ident: e_1_2_2_20_2 doi: 10.1021/acssensors.8b00257 – ident: e_1_2_2_47_2 doi: 10.1021/nn800727x – ident: e_1_2_2_59_1 – ident: e_1_2_2_3_2 doi: 10.1126/science.1065780 – ident: e_1_2_2_33_2 doi: 10.1038/cr.2012.10 – ident: e_1_2_2_13_1 – ident: e_1_2_2_36_2 doi: 10.1021/ja202639m – ident: e_1_2_2_11_2 doi: 10.1021/ja3118224 – ident: e_1_2_2_16_2 doi: 10.1038/ncomms1340 – ident: e_1_2_2_37_2 doi: 10.1002/anie.201502315 – ident: e_1_2_2_42_2 doi: 10.1038/235050a0 – ident: e_1_2_2_45_2 doi: 10.1021/acs.analchem.7b02763 – ident: e_1_2_2_49_1 doi: 10.1021/ja903768f – ident: e_1_2_2_2_2 doi: 10.1038/89335 – ident: e_1_2_2_8_1 doi: 10.1038/nature08962 – ident: e_1_2_2_21_1 – ident: e_1_2_2_50_2 doi: 10.1002/ange.201410720 – ident: e_1_2_2_10_1 – ident: e_1_2_2_69_1 doi: 10.1007/978-1-61779-080-5_20 – ident: e_1_2_2_52_2 doi: 10.1021/acsnano.7b06200 |
SSID | ssj0028806 |
Score | 2.575713 |
Snippet | In nature, the formation of spider silk fibers begins with dimerizing the pH‐sensitive N‐terminal domains of silk proteins (spidroins) upon lowering pH, and... In nature, the formation of spider silk fibers begins with dimerizing the pH-sensitive N-terminal domains of silk proteins (spidroins) upon lowering pH, and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1648 |
SubjectTerms | Aptamers Assembly Biomimetics Cells (biology) Deoxyribonucleic acid Dimerization DNA Fibers Lysosomes nanostructures Nucleic acids pH effects Proteins self-assembly Silk supramolecular chemistry |
Title | Reconfigurable Bioinspired Framework Nucleic Acid Nanoplatform Dynamically Manipulated in Living Cells for Subcellular Imaging |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201811117 https://www.ncbi.nlm.nih.gov/pubmed/30525284 https://www.proquest.com/docview/2172066268 https://www.proquest.com/docview/2155909011 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VXOilLS20KbRyJSROgV3biTfH7cIKKtgDAolb5M8qImQRu3uAA7-dmWSTslRVpfaWKLbs2DPjZ3vmDcCuMgZRQ8hir9EEyoHP4sxIF2uhMpvqvueaYofPJunxpfxxlVw9i-Jv-CG6AzfSjNpek4JrMzv4RRpKEdjkmjUgpadwcnLYIlR03vFHcRTOJrxIiJiy0LesjT1-sFp9dVX6DWquItd66Rm_Bd12uvE4ud5fzM2-fXjB5_g_f_UO3ixxKRs2grQBr3z1HtZHbTq4D_BIG9UqFD8XdxRtxb4X06Kia3rv2Lj18GITokcuLBvawjG03NPbUs8JF7PD-0rX1ATlPTvD9uu8YVi3qNhpQacabOTLcsawMENrRhcK5CHLTm7qPEqbcDE-uhgdx8vkDbGVCo2v7XFvvcTnxCCE5FYh0tJBpabvU5kZp4STru-8RsyDoMMmRocgQyZSk4a-2IK1alr5T8Ck8knCrbUZwr3ghFbOCGFkUIFbr1QEcTt3uV0Sm1N-jTJvKJl5ToOad4MawV5X_rah9PhjyZ1WFPKlas9yyuhFtPnpIIJv3WecDBoYXfnpgsrgRq1HUb0RfGxEqGtKUOZABAUR8FoQ_tKHfDg5OerePv9LpW14jc9Z7Wsud2BtfrfwXxBKzc3XWl2eAI4iFtY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4ty2G58GYJLGAkEKfsto4TNwcOpd2qZdseUJH2FtmOjSJCutq2QuXAb-Kv8I-YyQsVhJCQ9sCtaZ2XPeP57M58H8ALqTWiBhf7VuEUKHo29mMtUl8FMjaR6lquqHZ4No_G78Xb8_B8D741tTAVP0S74UaeUc7X5OC0IX3ykzWUSrApN6tHXi_rvMozu_2Mq7bV68kQh_gl56PTxWDs18ICvhESJwbT4dZYgZ9DjfCGG4koQDkZ6a6NRKxTGaQi7aZWYTzGgGhCrZwTLg4iHblugJe9BtdJRZzY-ofvWsIqjt5Q1TMFgU-y9w1NZIef7D7ubhj8DdvuQuUy1o1uwfeml6oUl4_Hm7U-Nl9-IZD8n7rxNtysgTfrV55yB_ZscRcOBo3e3T34SivxwmUfNpdUTsbeZMusoDwEm7JRk8LG5sT_nBnWN1nKMDQtL3K1JuDPhttCldwL-ZbN8HVLYTQ8NyvYNKNtGzaweb5i2JjhdE3_mFAKMJt8KoWi7sPiKt7-AewXy8I-BCakDUNujIkRz7o0UDLVQaCFk44bK6UHfmMriamZ20lAJE8qzmme0Bgm7Rh68Kptf1Fxlvyx5VFjekk9d60SkiwjXYCo58Hz9mccDOoYVdjlhtrgSrRDZcseHFYm294qIGlERD0e8NLw_vIMSX8-OW2PHv3LSc_gYLyYTZPpZH72GG7g93GZWC-OYH99ubFPEDeu9dPSVRkkV2zTPwA6XnQT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qRQI2vB-GAoMEYuU2mRl74gWLkDRqaBshVKTurJnxDLLqOlGTCIUFv8Sv8Enca8dGASEkpC7Y5TGO7Zn7OOPcew7AS2UMogafhE5jCJQ9l4SJkVmohUpsrLuOa-odPp7EBx_lu9PodAu-Nb0wNT9E-8CNPKOK1-Tgs8zv_SQNpQ5sKs3qkdOrdVnloVt9xk3b_M14iCv8ivPR_sngIFzrCoRWKowLtsOddRJfRwbRDbcKQYD2KjZdF8vEZEpkMutmTmM6xnxoI6O9lz4RsYl9V-DPXoGrMu4kpBUx_NDyVXF0hrqdSYiQVO8blsgO39u83M0s-Bu03UTKVaob3YLvzSTVFS5nu8uF2bVffuGP_I9m8TbcXMNu1q_95A5sufIuXB80anf34Cvtw0uff1peUDMZe5tP85KqEFzGRk0BG5sQ-3NuWd_mGcPENJ0VekGwnw1Xpa6YF4oVO8bbrWTR8Ni8ZEc5PbRhA1cUc4aDGQZr-r-ECoDZ-LySiboPJ5dx9w9gu5yW7hEwqVwUcWttgmjWZ0KrzAhhpFeeW6dUAGFjKqld87aTfEiR1ozTPKU1TNs1DOB1O35WM5b8ceROY3npOnLNUxIsI1WAuBfAi_ZrXAyaGF266ZLG4D60Q03LATysLbY9lSBhRMQ8AfDK7v5yDWl_Mt5v3z3-l4Oew7X3w1F6NJ4cPoEb-HFSVdXLHdheXCzdUwSNC_OsclQG6SWb9A9QfHLC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconfigurable+Bioinspired+Framework+Nucleic+Acid+Nanoplatform+Dynamically+Manipulated+in+Living+Cells+for+Subcellular+Imaging&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Peng%2C+Pai&rft.au=Du%2C+Yi&rft.au=Zheng%2C+Jiao&rft.au=Wang%2C+Huihui&rft.date=2019-02-04&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=6&rft.spage=1648&rft.epage=1653&rft_id=info:doi/10.1002%2Fanie.201811117&rft.externalDBID=10.1002%252Fanie.201811117&rft.externalDocID=ANIE201811117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |