Reconfigurable Bioinspired Framework Nucleic Acid Nanoplatform Dynamically Manipulated in Living Cells for Subcellular Imaging

In nature, the formation of spider silk fibers begins with dimerizing the pH‐sensitive N‐terminal domains of silk proteins (spidroins) upon lowering pH, and provides a natural masterpiece for programmable assembly. Inspired by the similarity of pH‐dependent dimerization behaviors, introduced here is...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 6; pp. 1648 - 1653
Main Authors Peng, Pai, Du, Yi, Zheng, Jiao, Wang, Huihui, Li, Tao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 04.02.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In nature, the formation of spider silk fibers begins with dimerizing the pH‐sensitive N‐terminal domains of silk proteins (spidroins) upon lowering pH, and provides a natural masterpiece for programmable assembly. Inspired by the similarity of pH‐dependent dimerization behaviors, introduced here is an i‐motif‐guided model to mimic the initial step of spidroin assembly at the subcellular level. A framework nucleic acid (FNA) nanoplatform is designed using two tetrahedral DNA nanostructures (TDNs) with different branched vertexes carrying a bimolecular i‐motif and a split ATP aptamer. Once TDNs enter acidic lysosomes within living cells, they assemble into a heterodimeric architecture, thereby enabling the formation of a larger‐size framework and meanwhile subcellular imaging in response to endogenous ATP, which can be dynamically manipulated by adjusting intracellular pH and ATP levels with external drug stimuli. Itsy bitsy spider: To mimic the self‐assembly manner of spider silk proteins, a reconfigurable bioinspired framework nucleic acid nanoplatform has been designed and is dynamically regulated within living cells for lysosome imaging. The dimerization of the DNA structures is pH‐dependent and they enable subcellular imaging in response to endogenous ATP.
AbstractList In nature, the formation of spider silk fibers begins with dimerizing the pH-sensitive N-terminal domains of silk proteins (spidroins) upon lowering pH, and provides a natural masterpiece for programmable assembly. Inspired by the similarity of pH-dependent dimerization behaviors, introduced here is an i-motif-guided model to mimic the initial step of spidroin assembly at the subcellular level. A framework nucleic acid (FNA) nanoplatform is designed using two tetrahedral DNA nanostructures (TDNs) with different branched vertexes carrying a bimolecular i-motif and a split ATP aptamer. Once TDNs enter acidic lysosomes within living cells, they assemble into a heterodimeric architecture, thereby enabling the formation of a larger-size framework and meanwhile subcellular imaging in response to endogenous ATP, which can be dynamically manipulated by adjusting intracellular pH and ATP levels with external drug stimuli.
In nature, the formation of spider silk fibers begins with dimerizing the pH‐sensitive N‐terminal domains of silk proteins (spidroins) upon lowering pH, and provides a natural masterpiece for programmable assembly. Inspired by the similarity of pH‐dependent dimerization behaviors, introduced here is an i‐motif‐guided model to mimic the initial step of spidroin assembly at the subcellular level. A framework nucleic acid (FNA) nanoplatform is designed using two tetrahedral DNA nanostructures (TDNs) with different branched vertexes carrying a bimolecular i‐motif and a split ATP aptamer. Once TDNs enter acidic lysosomes within living cells, they assemble into a heterodimeric architecture, thereby enabling the formation of a larger‐size framework and meanwhile subcellular imaging in response to endogenous ATP, which can be dynamically manipulated by adjusting intracellular pH and ATP levels with external drug stimuli. Itsy bitsy spider: To mimic the self‐assembly manner of spider silk proteins, a reconfigurable bioinspired framework nucleic acid nanoplatform has been designed and is dynamically regulated within living cells for lysosome imaging. The dimerization of the DNA structures is pH‐dependent and they enable subcellular imaging in response to endogenous ATP.
In nature, the formation of spider silk fibers begins with dimerizing the pH-sensitive N-terminal domains of silk proteins (spidroins) upon lowering pH, and provides a natural masterpiece for programmable assembly. Inspired by the similarity of pH-dependent dimerization behaviors, introduced here is an i-motif-guided model to mimic the initial step of spidroin assembly at the subcellular level. A framework nucleic acid (FNA) nanoplatform is designed using two tetrahedral DNA nanostructures (TDNs) with different branched vertexes carrying a bimolecular i-motif and a split ATP aptamer. Once TDNs enter acidic lysosomes within living cells, they assemble into a heterodimeric architecture, thereby enabling the formation of a larger-size framework and meanwhile subcellular imaging in response to endogenous ATP, which can be dynamically manipulated by adjusting intracellular pH and ATP levels with external drug stimuli.In nature, the formation of spider silk fibers begins with dimerizing the pH-sensitive N-terminal domains of silk proteins (spidroins) upon lowering pH, and provides a natural masterpiece for programmable assembly. Inspired by the similarity of pH-dependent dimerization behaviors, introduced here is an i-motif-guided model to mimic the initial step of spidroin assembly at the subcellular level. A framework nucleic acid (FNA) nanoplatform is designed using two tetrahedral DNA nanostructures (TDNs) with different branched vertexes carrying a bimolecular i-motif and a split ATP aptamer. Once TDNs enter acidic lysosomes within living cells, they assemble into a heterodimeric architecture, thereby enabling the formation of a larger-size framework and meanwhile subcellular imaging in response to endogenous ATP, which can be dynamically manipulated by adjusting intracellular pH and ATP levels with external drug stimuli.
Author Zheng, Jiao
Peng, Pai
Li, Tao
Du, Yi
Wang, Huihui
Author_xml – sequence: 1
  givenname: Pai
  orcidid: 0000-0002-9655-1047
  surname: Peng
  fullname: Peng, Pai
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Yi
  orcidid: 0000-0002-1025-6136
  surname: Du
  fullname: Du, Yi
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Jiao
  surname: Zheng
  fullname: Zheng, Jiao
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Huihui
  surname: Wang
  fullname: Wang, Huihui
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Tao
  orcidid: 0000-0002-9724-3812
  surname: Li
  fullname: Li, Tao
  email: tlitao@ustc.edu.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30525284$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAURi1URB-wZYkssWGTwY_ETpbD0MJIwyBB95HjXI9cHDvYSavZ8NvxaPqQKiG88bXuOfYn33N04oMHhN5SsqCEsI_KW1gwQmual3yBzmjFaMGl5Ce5LjkvZF3RU3Se0k3m65qIV-iUk4pVrC7P0J8foIM3djdH1TnAn2ywPo02Qo-vohrgLsRfeDtrB1bjpbY93iofRqcmE-KAP--9GqxWzu3xtxxmnHMnu9bjjb21fodX4FzCGcY_507nQyYiXg9ql7uv0UujXII39_sFur66vF59LTbfv6xXy02hSylkoQkDDWWuq45TwrSsBFNGio6CKJuul7wve9qDEoJT1uiqU8aUpuGiE4byC_TheO0Yw-8Z0tQONh2yKA9hTi2jVdWQhtAD-v4ZehPm6HO4TElGhGCiztS7e2ruBujbMdpBxX378LEZWBwBHUNKEcwjQkl7mFx7mFz7OLkslM8EbSc12eCnqKz7t9YctTvrYP-fR9rldn355P4Fn6KuXw
CitedBy_id crossref_primary_10_1021_acs_analchem_1c00436
crossref_primary_10_1002_anie_202007962
crossref_primary_10_1021_acsami_0c15543
crossref_primary_10_1002_chem_202301300
crossref_primary_10_1021_accountsmr_3c00112
crossref_primary_10_1021_acsami_3c05574
crossref_primary_10_1021_acsabm_2c00128
crossref_primary_10_1021_acs_analchem_4c02723
crossref_primary_10_1007_s00604_023_06010_8
crossref_primary_10_1039_D3SC01960H
crossref_primary_10_1002_smll_202007355
crossref_primary_10_1002_ange_202319908
crossref_primary_10_1016_j_reactfunctpolym_2024_105918
crossref_primary_10_1021_acsnano_0c04031
crossref_primary_10_1007_s40242_019_9249_4
crossref_primary_10_1016_j_bios_2022_114059
crossref_primary_10_1002_adma_202201731
crossref_primary_10_1002_smll_202106281
crossref_primary_10_1021_acs_analchem_4c05032
crossref_primary_10_1007_s41061_020_0283_y
crossref_primary_10_3390_ijms22041803
crossref_primary_10_1002_ange_202106651
crossref_primary_10_1021_acs_analchem_1c03284
crossref_primary_10_1002_asia_202101315
crossref_primary_10_1002_ange_201914511
crossref_primary_10_1016_j_bios_2022_114183
crossref_primary_10_1093_nar_gkaa020
crossref_primary_10_1002_anie_202319908
crossref_primary_10_1016_j_nantod_2023_101808
crossref_primary_10_2139_ssrn_4022154
crossref_primary_10_1021_acsptsci_3c00190
crossref_primary_10_1007_s11426_021_1091_x
crossref_primary_10_1039_D4SC04424J
crossref_primary_10_1002_anie_202106651
crossref_primary_10_1016_j_snb_2024_137085
crossref_primary_10_1039_D5TB00116A
crossref_primary_10_1002_ange_202007962
crossref_primary_10_1002_anie_201916432
crossref_primary_10_1021_acsnano_9b01324
crossref_primary_10_1039_D4NR04360J
crossref_primary_10_1021_acsabm_9b01197
crossref_primary_10_1021_acsami_2c13735
crossref_primary_10_1002_adma_202302972
crossref_primary_10_1021_acsnano_0c03362
crossref_primary_10_1007_s12274_021_3869_y
crossref_primary_10_3389_fnano_2020_574328
crossref_primary_10_1002_smll_202200983
crossref_primary_10_1039_D4BM00955J
crossref_primary_10_1002_cjoc_202000753
crossref_primary_10_1039_D4TB01883D
crossref_primary_10_1002_smll_202205909
crossref_primary_10_1021_acsami_0c13806
crossref_primary_10_1039_D2CS00317A
crossref_primary_10_1021_acs_nanolett_9b03606
crossref_primary_10_1002_ange_201916432
crossref_primary_10_1021_acs_analchem_0c01612
crossref_primary_10_1039_D0AN00101E
crossref_primary_10_1016_j_aca_2024_343237
crossref_primary_10_1021_acsami_3c01611
crossref_primary_10_1002_adsr_202200102
crossref_primary_10_1002_jmr_2829
crossref_primary_10_1039_D2CC06017E
crossref_primary_10_1039_D0AY00105H
crossref_primary_10_1039_D3MH00592E
crossref_primary_10_1002_adma_202007738
crossref_primary_10_1039_D2SC07095B
crossref_primary_10_1016_j_asems_2024_100098
crossref_primary_10_1002_anie_201914511
crossref_primary_10_1021_acs_analchem_1c01453
crossref_primary_10_1021_acsnano_4c16669
crossref_primary_10_1021_acsbiomaterials_4c01339
crossref_primary_10_1039_D3AN01871G
crossref_primary_10_1021_acs_analchem_9b05304
crossref_primary_10_1021_acs_analchem_1c02829
crossref_primary_10_1021_jasms_2c00137
crossref_primary_10_1021_acs_analchem_3c01117
crossref_primary_10_1039_D3SC03989G
crossref_primary_10_1021_acs_chemrev_0c01332
crossref_primary_10_1021_acs_nanolett_2c04658
crossref_primary_10_1039_D1SC04229G
crossref_primary_10_1166_jbn_2022_3407
crossref_primary_10_1038_s41427_021_00309_9
crossref_primary_10_1002_advs_202100328
crossref_primary_10_1016_j_microc_2023_108779
crossref_primary_10_1016_j_talanta_2019_120287
crossref_primary_10_2116_analsci_19P455
crossref_primary_10_1002_ange_202115561
crossref_primary_10_1002_advs_202000557
crossref_primary_10_1038_s41929_020_0433_1
crossref_primary_10_1021_acs_analchem_9b03659
crossref_primary_10_1016_j_mattod_2022_12_003
crossref_primary_10_1021_acs_analchem_2c05200
crossref_primary_10_1039_D2RA05006D
crossref_primary_10_1039_C9QM00779B
crossref_primary_10_1002_anie_202115561
crossref_primary_10_1016_j_bios_2022_114231
crossref_primary_10_1021_acs_analchem_9b03420
crossref_primary_10_1016_j_isci_2023_106620
crossref_primary_10_1002_smll_202204108
crossref_primary_10_1021_acsami_2c20504
crossref_primary_10_1021_jacs_2c00823
crossref_primary_10_1016_j_trac_2023_117303
crossref_primary_10_1016_j_cej_2023_143494
crossref_primary_10_1021_acsnano_9b06029
crossref_primary_10_1039_C9BM00746F
Cites_doi 10.1038/nature06907
10.1146/annurev.bi.55.070186.003311
10.1038/ncb1620
10.1093/nar/gkx202
10.1002/ange.201202533
10.1002/ange.201003795
10.1083/jcb.9.4.773
10.1002/ange.201403236
10.1002/ange.201502315
10.1021/nl402873y
10.1002/ange.201411383
10.1021/acs.analchem.5b01527
10.1002/ange.201803965
10.1038/nmat974
10.1016/j.biochi.2007.07.026
10.1038/s41467-017-01157-4
10.1038/nrm2217
10.1038/ncomms4364
10.1002/anie.201202533
10.1038/nature08729
10.1158/0008-5472.CAN-05-4162
10.1016/S0305-7372(03)00106-3
10.1002/anie.201403236
10.1021/nn2005574
10.1002/anie.201411383
10.1146/annurev-anchem-061417-010007
10.1152/physrev.1981.61.2.296
10.1021/nl100169p
10.1073/pnas.0904764106
10.1056/NEJM197311152892007
10.1002/ange.201400323
10.1002/anie.200902538
10.1021/acsnano.7b00725
10.1002/anie.201410720
10.1016/j.bbamem.2008.11.018
10.1002/anie.201802701
10.1002/anie.200352402
10.1002/anie.201400323
10.1016/S0161-813X(02)00099-2
10.1039/C8CC00440D
10.1002/anie.201003795
10.1002/ange.200902538
10.1038/s41467-018-05904-z
10.1021/ar500073a
10.1038/nnano.2009.83
10.1021/jacs.7b11311
10.1126/science.1120367
10.1038/ncomms5940
10.1084/jem.185.8.1481
10.1002/ange.200352402
10.1124/pr.56.4.5
10.1021/acssensors.8b00257
10.1021/nn800727x
10.1126/science.1065780
10.1038/cr.2012.10
10.1021/ja202639m
10.1021/ja3118224
10.1038/ncomms1340
10.1002/anie.201502315
10.1038/235050a0
10.1021/acs.analchem.7b02763
10.1021/ja903768f
10.1038/89335
10.1038/nature08962
10.1002/ange.201410720
10.1007/978-1-61779-080-5_20
10.1021/acsnano.7b06200
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201811117
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 1653
ExternalDocumentID 30525284
10_1002_anie_201811117
ANIE201811117
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21874124; 21575133
– fundername: Recruitment Program of Global Experts
– fundername: National Key Research & Development Program
  funderid: 2016YFA0201300
– fundername: National Natural Science Foundation of China
  grantid: 21874124
– fundername: National Key Research & Development Program
  grantid: 2016YFA0201300
– fundername: National Natural Science Foundation of China
  grantid: 21575133
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4767-c02ece44765b3102c7562af76b1e649bd73d4d1dea663129c5baff4f936b6f13
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:12:41 EDT 2025
Fri Jul 25 12:00:10 EDT 2025
Wed Feb 19 02:30:39 EST 2025
Thu Apr 24 23:09:42 EDT 2025
Tue Jul 01 02:26:39 EDT 2025
Wed Jan 22 17:03:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords self-assembly
nucleic acids
nanostructures
supramolecular chemistry
DNA
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4767-c02ece44765b3102c7562af76b1e649bd73d4d1dea663129c5baff4f936b6f13
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1025-6136
0000-0002-9724-3812
0000-0002-9655-1047
PMID 30525284
PQID 2172066268
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2155909011
proquest_journals_2172066268
pubmed_primary_30525284
crossref_primary_10_1002_anie_201811117
crossref_citationtrail_10_1002_anie_201811117
wiley_primary_10_1002_anie_201811117_ANIE201811117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 4, 2019
PublicationDateYYYYMMDD 2019-02-04
PublicationDate_xml – month: 02
  year: 2019
  text: February 4, 2019
  day: 04
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2010; 10
2017; 8
2009 2009; 48 121
2010; 465
2017; 45
2017; 89
2010; 463
2018; 9
2018; 3
2014; 5
2013; 13
2006; 66
1997; 185
2018 2018; 57 130
2012 2012; 51 124
2015; 87
2001; 19
2007; 8
2003; 2
2007; 9
2015 2015; 54 127
1961; 9
2012; 22
2011; 731
2009; 1788
1973; 289
2011; 2
2018; 140
2005; 310
2002; 295
1986; 55
2014; 47
2003 2003; 42 115
2009; 131
1981; 61
2011; 5
2011; 133
1972; 235
2017; 11
2002; 23
2004; 56
2018
2013; 135
2011 2011; 50 123
2003; 29
2009; 4
2009; 3
2018; 12
2008; 453
2018; 11
2018; 54
2007; 89
2009; 106
e_1_2_2_4_1
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_22_3
e_1_2_2_24_1
e_1_2_2_49_1
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_1
e_1_2_2_62_1
e_1_2_2_64_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_8_1
e_1_2_2_64_3
e_1_2_2_66_1
e_1_2_2_45_2
e_1_2_2_26_1
e_1_2_2_68_1
e_1_2_2_60_2
e_1_2_2_36_2
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_59_1
e_1_2_2_11_2
e_1_2_2_74_2
e_1_2_2_19_3
e_1_2_2_30_1
e_1_2_2_51_1
e_1_2_2_74_3
e_1_2_2_19_2
e_1_2_2_53_2
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_15_2
e_1_2_2_70_1
e_1_2_2_72_1
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_61_2
e_1_2_2_65_1
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_63_2
e_1_2_2_9_1
e_1_2_2_67_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_46_1
e_1_2_2_69_1
e_1_2_2_9_2
Hu Q. (e_1_2_2_57_1) 2018
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_37_3
e_1_2_2_39_2
e_1_2_2_10_1
e_1_2_2_50_2
e_1_2_2_75_2
e_1_2_2_31_1
e_1_2_2_54_1
e_1_2_2_73_1
e_1_2_2_18_2
e_1_2_2_52_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_14_3
e_1_2_2_35_1
e_1_2_2_58_1
e_1_2_2_75_3
e_1_2_2_14_2
e_1_2_2_56_2
e_1_2_2_50_1
e_1_2_2_71_1
References_xml – volume: 22
  start-page: 1022
  year: 2012
  end-page: 1033
  publication-title: Cell Res.
– volume: 89
  start-page: 1562
  year: 2007
  end-page: 1572
  publication-title: Biochimie
– year: 2018
  publication-title: Chem. Rev.
– volume: 3
  start-page: 425
  year: 2009
  end-page: 433
  publication-title: ACS Nano
– volume: 61
  start-page: 296
  year: 1981
  end-page: 434
  publication-title: Physiol. Rev.
– volume: 54 127
  start-page: 3957 4029
  year: 2015 2015
  end-page: 3961 4033
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 945
  year: 2007
  end-page: 953
  publication-title: Nat. Cell Biol.
– volume: 4
  start-page: 325
  year: 2009
  end-page: 330
  publication-title: Nat. Nanotechnol.
– volume: 135
  start-page: 1593
  year: 2013
  end-page: 1599
  publication-title: J. Am. Chem. Soc.
– volume: 48 121
  start-page: 7660 7796
  year: 2009 2009
  end-page: 7663 7799
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 42 115
  start-page: 5734 5912
  year: 2003 2003
  end-page: 5736 5914
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 7131 6387
  year: 2018 2018
  end-page: 7135 6391
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54
  start-page: 3520
  year: 2018
  end-page: 3523
  publication-title: Chem. Commun.
– volume: 463
  start-page: 640
  year: 2010
  end-page: 643
  publication-title: Nature
– volume: 56
  start-page: 633
  year: 2004
  end-page: 654
  publication-title: Pharmacol. Rev.
– volume: 12
  start-page: 263
  year: 2018
  end-page: 271
  publication-title: ACS Nano
– volume: 51 124
  start-page: 6432 6538
  year: 2012 2012
  end-page: 6435 6541
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 3579
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  start-page: 622
  year: 2007
  end-page: 632
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 140
  start-page: 4186
  year: 2018
  end-page: 4190
  publication-title: J. Am. Chem. Soc.
– volume: 453
  start-page: 788
  year: 2008
  end-page: 792
  publication-title: Nature
– volume: 295
  start-page: 472
  year: 2002
  end-page: 476
  publication-title: Science
– volume: 11
  start-page: 4060
  year: 2017
  end-page: 4066
  publication-title: ACS Nano
– volume: 13
  start-page: 4920
  year: 2013
  end-page: 4924
  publication-title: Nano Lett.
– volume: 5
  start-page: 4940
  year: 2014
  publication-title: Nat. Commun.
– volume: 89
  start-page: 10941
  year: 2017
  end-page: 10947
  publication-title: Anal. Chem.
– volume: 66
  start-page: 4880
  year: 2006
  end-page: 4887
  publication-title: Cancer Res.
– volume: 19
  start-page: 573
  year: 2001
  end-page: 577
  publication-title: Nat. Biotechnol.
– volume: 731
  start-page: 237
  year: 2011
  end-page: 245
  publication-title: Methods Mol. Biol.
– volume: 10
  start-page: 1393
  year: 2010
  end-page: 1397
  publication-title: Nano Lett.
– volume: 289
  start-page: 1074
  year: 1973
  end-page: 1076
  publication-title: N. Engl. J. Med.
– volume: 3
  start-page: 903
  year: 2018
  end-page: 919
  publication-title: ACS Sens.
– volume: 235
  start-page: 50
  year: 1972
  end-page: 52
  publication-title: Nature
– volume: 106
  start-page: 15651
  year: 2009
  end-page: 15656
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 87
  start-page: 8724
  year: 2015
  end-page: 8731
  publication-title: Anal. Chem.
– volume: 47
  start-page: 1853
  year: 2014
  end-page: 1860
  publication-title: Acc. Chem. Res.
– volume: 465
  start-page: 236
  year: 2010
  end-page: 238
  publication-title: Nature
– volume: 11
  start-page: 171
  year: 2018
  end-page: 195
  publication-title: Annu. Rev. Anal. Chem.
– volume: 9
  start-page: 773
  year: 1961
  end-page: 784
  publication-title: J. Biophys. Biochem. Cytol.
– volume: 2
  start-page: 668
  year: 2003
  end-page: 671
  publication-title: Nat. Mater.
– volume: 53 126
  start-page: 5821 5931
  year: 2014 2014
  end-page: 5826 5936
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 2151 2179
  year: 2015 2015
  end-page: 2155 2183
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 185
  start-page: 1481
  year: 1997
  end-page: 1486
  publication-title: J. Exp. Med.
– volume: 5
  start-page: 5427
  year: 2011
  end-page: 5432
  publication-title: ACS Nano
– volume: 133
  start-page: 11597
  year: 2011
  end-page: 11604
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 7745 7879
  year: 2014 2014
  end-page: 7750 7884
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 7693 7803
  year: 2015 2015
  end-page: 7697 7808
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1788
  start-page: 470
  year: 2009
  end-page: 476
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 55
  start-page: 663
  year: 1986
  end-page: 700
  publication-title: Annu. Rev. Biochem.
– volume: 50 123
  start-page: 310 324
  year: 2011 2011
  end-page: 313 328
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 310
  start-page: 1661
  year: 2005
  end-page: 1665
  publication-title: Science
– volume: 131
  start-page: 13093
  year: 2009
  end-page: 13098
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 487
  year: 2002
  end-page: 502
  publication-title: NeuroToxicology
– volume: 8
  start-page: 1080
  year: 2017
  publication-title: Nat. Commun.
– volume: 2
  start-page: 340
  year: 2011
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3364
  year: 2014
  publication-title: Nat. Commun.
– volume: 45
  start-page: 4306
  year: 2017
  end-page: 4314
  publication-title: Nucleic Acids Res.
– volume: 29
  start-page: 541
  year: 2003
  end-page: 549
  publication-title: Cancer Treat. Rev.
– ident: e_1_2_2_58_1
  doi: 10.1038/nature06907
– ident: e_1_2_2_29_2
  doi: 10.1146/annurev.bi.55.070186.003311
– ident: e_1_2_2_32_2
  doi: 10.1038/ncb1620
– ident: e_1_2_2_46_1
– ident: e_1_2_2_12_2
  doi: 10.1093/nar/gkx202
– ident: e_1_2_2_64_3
  doi: 10.1002/ange.201202533
– ident: e_1_2_2_9_2
  doi: 10.1002/ange.201003795
– ident: e_1_2_2_72_1
  doi: 10.1083/jcb.9.4.773
– ident: e_1_2_2_54_1
– ident: e_1_2_2_24_2
  doi: 10.1002/ange.201403236
– ident: e_1_2_2_38_1
– ident: e_1_2_2_37_3
  doi: 10.1002/ange.201502315
– ident: e_1_2_2_40_2
  doi: 10.1021/nl402873y
– ident: e_1_2_2_62_1
– ident: e_1_2_2_31_1
– ident: e_1_2_2_75_3
  doi: 10.1002/ange.201411383
– ident: e_1_2_2_43_2
  doi: 10.1021/acs.analchem.5b01527
– ident: e_1_2_2_19_3
  doi: 10.1002/ange.201803965
– ident: e_1_2_2_60_2
  doi: 10.1038/nmat974
– ident: e_1_2_2_30_1
  doi: 10.1016/j.biochi.2007.07.026
– ident: e_1_2_2_5_2
  doi: 10.1038/s41467-017-01157-4
– ident: e_1_2_2_28_2
  doi: 10.1038/nrm2217
– ident: e_1_2_2_4_1
– ident: e_1_2_2_55_2
  doi: 10.1038/ncomms4364
– ident: e_1_2_2_64_2
  doi: 10.1002/anie.201202533
– ident: e_1_2_2_7_1
  doi: 10.1038/nature08729
– ident: e_1_2_2_44_2
  doi: 10.1158/0008-5472.CAN-05-4162
– ident: e_1_2_2_68_1
  doi: 10.1016/S0305-7372(03)00106-3
– ident: e_1_2_2_24_1
  doi: 10.1002/anie.201403236
– ident: e_1_2_2_17_1
– ident: e_1_2_2_25_1
  doi: 10.1021/nn2005574
– ident: e_1_2_2_41_1
– ident: e_1_2_2_75_2
  doi: 10.1002/anie.201411383
– ident: e_1_2_2_18_2
  doi: 10.1146/annurev-anchem-061417-010007
– ident: e_1_2_2_63_2
  doi: 10.1152/physrev.1981.61.2.296
– ident: e_1_2_2_39_2
  doi: 10.1021/nl100169p
– ident: e_1_2_2_65_1
  doi: 10.1073/pnas.0904764106
– ident: e_1_2_2_71_1
  doi: 10.1056/NEJM197311152892007
– ident: e_1_2_2_22_3
  doi: 10.1002/ange.201400323
– ident: e_1_2_2_74_2
  doi: 10.1002/anie.200902538
– ident: e_1_2_2_48_2
  doi: 10.1021/acsnano.7b00725
– ident: e_1_2_2_50_1
  doi: 10.1002/anie.201410720
– ident: e_1_2_2_1_1
– ident: e_1_2_2_51_1
– year: 2018
  ident: e_1_2_2_57_1
  publication-title: Chem. Rev.
– ident: e_1_2_2_70_1
  doi: 10.1016/j.bbamem.2008.11.018
– ident: e_1_2_2_19_2
  doi: 10.1002/anie.201802701
– ident: e_1_2_2_35_1
– ident: e_1_2_2_14_2
  doi: 10.1002/anie.200352402
– ident: e_1_2_2_22_2
  doi: 10.1002/anie.201400323
– ident: e_1_2_2_67_1
  doi: 10.1016/S0161-813X(02)00099-2
– ident: e_1_2_2_61_2
  doi: 10.1039/C8CC00440D
– ident: e_1_2_2_73_1
– ident: e_1_2_2_9_1
  doi: 10.1002/anie.201003795
– ident: e_1_2_2_74_3
  doi: 10.1002/ange.200902538
– ident: e_1_2_2_6_2
  doi: 10.1038/s41467-018-05904-z
– ident: e_1_2_2_15_2
  doi: 10.1021/ar500073a
– ident: e_1_2_2_26_1
– ident: e_1_2_2_27_2
  doi: 10.1038/nnano.2009.83
– ident: e_1_2_2_53_2
  doi: 10.1021/jacs.7b11311
– ident: e_1_2_2_23_2
  doi: 10.1126/science.1120367
– ident: e_1_2_2_34_1
  doi: 10.1038/ncomms5940
– ident: e_1_2_2_56_2
  doi: 10.1084/jem.185.8.1481
– ident: e_1_2_2_14_3
  doi: 10.1002/ange.200352402
– ident: e_1_2_2_66_1
  doi: 10.1124/pr.56.4.5
– ident: e_1_2_2_20_2
  doi: 10.1021/acssensors.8b00257
– ident: e_1_2_2_47_2
  doi: 10.1021/nn800727x
– ident: e_1_2_2_59_1
– ident: e_1_2_2_3_2
  doi: 10.1126/science.1065780
– ident: e_1_2_2_33_2
  doi: 10.1038/cr.2012.10
– ident: e_1_2_2_13_1
– ident: e_1_2_2_36_2
  doi: 10.1021/ja202639m
– ident: e_1_2_2_11_2
  doi: 10.1021/ja3118224
– ident: e_1_2_2_16_2
  doi: 10.1038/ncomms1340
– ident: e_1_2_2_37_2
  doi: 10.1002/anie.201502315
– ident: e_1_2_2_42_2
  doi: 10.1038/235050a0
– ident: e_1_2_2_45_2
  doi: 10.1021/acs.analchem.7b02763
– ident: e_1_2_2_49_1
  doi: 10.1021/ja903768f
– ident: e_1_2_2_2_2
  doi: 10.1038/89335
– ident: e_1_2_2_8_1
  doi: 10.1038/nature08962
– ident: e_1_2_2_21_1
– ident: e_1_2_2_50_2
  doi: 10.1002/ange.201410720
– ident: e_1_2_2_10_1
– ident: e_1_2_2_69_1
  doi: 10.1007/978-1-61779-080-5_20
– ident: e_1_2_2_52_2
  doi: 10.1021/acsnano.7b06200
SSID ssj0028806
Score 2.575713
Snippet In nature, the formation of spider silk fibers begins with dimerizing the pH‐sensitive N‐terminal domains of silk proteins (spidroins) upon lowering pH, and...
In nature, the formation of spider silk fibers begins with dimerizing the pH-sensitive N-terminal domains of silk proteins (spidroins) upon lowering pH, and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1648
SubjectTerms Aptamers
Assembly
Biomimetics
Cells (biology)
Deoxyribonucleic acid
Dimerization
DNA
Fibers
Lysosomes
nanostructures
Nucleic acids
pH effects
Proteins
self-assembly
Silk
supramolecular chemistry
Title Reconfigurable Bioinspired Framework Nucleic Acid Nanoplatform Dynamically Manipulated in Living Cells for Subcellular Imaging
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201811117
https://www.ncbi.nlm.nih.gov/pubmed/30525284
https://www.proquest.com/docview/2172066268
https://www.proquest.com/docview/2155909011
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VXOilLS20KbRyJSROgV3biTfH7cIKKtgDAolb5M8qImQRu3uAA7-dmWSTslRVpfaWKLbs2DPjZ3vmDcCuMgZRQ8hir9EEyoHP4sxIF2uhMpvqvueaYofPJunxpfxxlVw9i-Jv-CG6AzfSjNpek4JrMzv4RRpKEdjkmjUgpadwcnLYIlR03vFHcRTOJrxIiJiy0LesjT1-sFp9dVX6DWquItd66Rm_Bd12uvE4ud5fzM2-fXjB5_g_f_UO3ixxKRs2grQBr3z1HtZHbTq4D_BIG9UqFD8XdxRtxb4X06Kia3rv2Lj18GITokcuLBvawjG03NPbUs8JF7PD-0rX1ATlPTvD9uu8YVi3qNhpQacabOTLcsawMENrRhcK5CHLTm7qPEqbcDE-uhgdx8vkDbGVCo2v7XFvvcTnxCCE5FYh0tJBpabvU5kZp4STru-8RsyDoMMmRocgQyZSk4a-2IK1alr5T8Ck8knCrbUZwr3ghFbOCGFkUIFbr1QEcTt3uV0Sm1N-jTJvKJl5ToOad4MawV5X_rah9PhjyZ1WFPKlas9yyuhFtPnpIIJv3WecDBoYXfnpgsrgRq1HUb0RfGxEqGtKUOZABAUR8FoQ_tKHfDg5OerePv9LpW14jc9Z7Wsud2BtfrfwXxBKzc3XWl2eAI4iFtY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4ty2G58GYJLGAkEKfsto4TNwcOpd2qZdseUJH2FtmOjSJCutq2QuXAb-Kv8I-YyQsVhJCQ9sCtaZ2XPeP57M58H8ALqTWiBhf7VuEUKHo29mMtUl8FMjaR6lquqHZ4No_G78Xb8_B8D741tTAVP0S74UaeUc7X5OC0IX3ykzWUSrApN6tHXi_rvMozu_2Mq7bV68kQh_gl56PTxWDs18ICvhESJwbT4dZYgZ9DjfCGG4koQDkZ6a6NRKxTGaQi7aZWYTzGgGhCrZwTLg4iHblugJe9BtdJRZzY-ofvWsIqjt5Q1TMFgU-y9w1NZIef7D7ubhj8DdvuQuUy1o1uwfeml6oUl4_Hm7U-Nl9-IZD8n7rxNtysgTfrV55yB_ZscRcOBo3e3T34SivxwmUfNpdUTsbeZMusoDwEm7JRk8LG5sT_nBnWN1nKMDQtL3K1JuDPhttCldwL-ZbN8HVLYTQ8NyvYNKNtGzaweb5i2JjhdE3_mFAKMJt8KoWi7sPiKt7-AewXy8I-BCakDUNujIkRz7o0UDLVQaCFk44bK6UHfmMriamZ20lAJE8qzmme0Bgm7Rh68Kptf1Fxlvyx5VFjekk9d60SkiwjXYCo58Hz9mccDOoYVdjlhtrgSrRDZcseHFYm294qIGlERD0e8NLw_vIMSX8-OW2PHv3LSc_gYLyYTZPpZH72GG7g93GZWC-OYH99ubFPEDeu9dPSVRkkV2zTPwA6XnQT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qRQI2vB-GAoMEYuU2mRl74gWLkDRqaBshVKTurJnxDLLqOlGTCIUFv8Sv8Enca8dGASEkpC7Y5TGO7Zn7OOPcew7AS2UMogafhE5jCJQ9l4SJkVmohUpsrLuOa-odPp7EBx_lu9PodAu-Nb0wNT9E-8CNPKOK1-Tgs8zv_SQNpQ5sKs3qkdOrdVnloVt9xk3b_M14iCv8ivPR_sngIFzrCoRWKowLtsOddRJfRwbRDbcKQYD2KjZdF8vEZEpkMutmTmM6xnxoI6O9lz4RsYl9V-DPXoGrMu4kpBUx_NDyVXF0hrqdSYiQVO8blsgO39u83M0s-Bu03UTKVaob3YLvzSTVFS5nu8uF2bVffuGP_I9m8TbcXMNu1q_95A5sufIuXB80anf34Cvtw0uff1peUDMZe5tP85KqEFzGRk0BG5sQ-3NuWd_mGcPENJ0VekGwnw1Xpa6YF4oVO8bbrWTR8Ni8ZEc5PbRhA1cUc4aDGQZr-r-ECoDZ-LySiboPJ5dx9w9gu5yW7hEwqVwUcWttgmjWZ0KrzAhhpFeeW6dUAGFjKqld87aTfEiR1ozTPKU1TNs1DOB1O35WM5b8ceROY3npOnLNUxIsI1WAuBfAi_ZrXAyaGF266ZLG4D60Q03LATysLbY9lSBhRMQ8AfDK7v5yDWl_Mt5v3z3-l4Oew7X3w1F6NJ4cPoEb-HFSVdXLHdheXCzdUwSNC_OsclQG6SWb9A9QfHLC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconfigurable+Bioinspired+Framework+Nucleic+Acid+Nanoplatform+Dynamically+Manipulated+in+Living+Cells+for+Subcellular+Imaging&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Peng%2C+Pai&rft.au=Du%2C+Yi&rft.au=Zheng%2C+Jiao&rft.au=Wang%2C+Huihui&rft.date=2019-02-04&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=6&rft.spage=1648&rft.epage=1653&rft_id=info:doi/10.1002%2Fanie.201811117&rft.externalDBID=10.1002%252Fanie.201811117&rft.externalDocID=ANIE201811117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon