A State‐of‐the‐Art Heterogeneous Catalyst for Efficient and General Nitrile Hydrogenation

Cobalt‐doped hybrid materials consisting of metal oxides and carbon derived from chitin were prepared, characterized and tested for industrially relevant nitrile hydrogenations. The optimal catalyst supported onto MgO showed, after pyrolysis at 700 °C, magnesium oxide nanocubes decorated with carbon...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 26; no. 67; pp. 15589 - 15595
Main Authors Formenti, Dario, Mocci, Rita, Atia, Hanan, Dastgir, Sarim, Anwar, Muhammad, Bachmann, Stephan, Scalone, Michelangelo, Junge, Kathrin, Beller, Matthias
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 01.12.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cobalt‐doped hybrid materials consisting of metal oxides and carbon derived from chitin were prepared, characterized and tested for industrially relevant nitrile hydrogenations. The optimal catalyst supported onto MgO showed, after pyrolysis at 700 °C, magnesium oxide nanocubes decorated with carbon‐enveloped Co nanoparticles. This special structure allows for the selective hydrogenation of diverse and demanding nitriles to the corresponding primary amines under mild conditions (e.g. 70 °C, 20 bar H2). The advantage of this novel catalytic material is showcased for industrially important substrates, including adipodinitrile, picolinonitrile, and fatty acid nitriles. Notably, the developed system outperformed all other tested commercial catalysts, for example, Raney Nickel and even noble‐metal‐based systems in these transformations. Mild at heart: A nanostructured catalytic material composed by cobalt nanoparticles, magnesium oxide and a biowaste‐derived carbon matrix is able to efficiently mediate the hydrogenation of nitriles. Not only the mild operative conditions are of note, but also the remarkable selectivity towards primary amines. This allows the preparation of a large array of molecules in high yields even under scaled‐up conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.202001866