Stable Heterometallic Cluster‐Based Organic Framework Catalysts for Artificial Photosynthesis

A series of stable heterometallic Fe2M cluster‐based MOFs (NNU‐31‐M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and p...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 7; pp. 2659 - 2663
Main Authors Dong, Long‐Zhang, Zhang, Lei, Liu, Jiang, Huang, Qing, Lu, Meng, Ji, Wen‐Xin, Lan, Ya‐Qian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 10.02.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A series of stable heterometallic Fe2M cluster‐based MOFs (NNU‐31‐M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low‐valent metal M accepts electrons to reduce CO2, and high‐valent Fe uses holes to oxidize H2O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU‐31‐Zn exhibits the highest HCOOH yield of 26.3 μmol g−1 h−1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction. A series of stable heterometallic Fe2M cluster‐based MOFs achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. A strategy is proposed to design crystalline photocatalysts to realize the overall artificial photosynthetic reaction.
AbstractList A series of stable heterometallic Fe2M cluster‐based MOFs (NNU‐31‐M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low‐valent metal M accepts electrons to reduce CO2, and high‐valent Fe uses holes to oxidize H2O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU‐31‐Zn exhibits the highest HCOOH yield of 26.3 μmol g−1 h−1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction. A series of stable heterometallic Fe2M cluster‐based MOFs achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. A strategy is proposed to design crystalline photocatalysts to realize the overall artificial photosynthetic reaction.
A series of stable heterometallic Fe M cluster-based MOFs (NNU-31-M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO and H O into HCOOH and O without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low-valent metal M accepts electrons to reduce CO , and high-valent Fe uses holes to oxidize H O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU-31-Zn exhibits the highest HCOOH yield of 26.3 μmol g  h (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction.
A series of stable heterometallic Fe2 M cluster-based MOFs (NNU-31-M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2 O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low-valent metal M accepts electrons to reduce CO2 , and high-valent Fe uses holes to oxidize H2 O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU-31-Zn exhibits the highest HCOOH yield of 26.3 μmol g-1  h-1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction.A series of stable heterometallic Fe2 M cluster-based MOFs (NNU-31-M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2 O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low-valent metal M accepts electrons to reduce CO2 , and high-valent Fe uses holes to oxidize H2 O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU-31-Zn exhibits the highest HCOOH yield of 26.3 μmol g-1  h-1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction.
A series of stable heterometallic Fe2M cluster‐based MOFs (NNU‐31‐M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low‐valent metal M accepts electrons to reduce CO2, and high‐valent Fe uses holes to oxidize H2O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU‐31‐Zn exhibits the highest HCOOH yield of 26.3 μmol g−1 h−1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction.
A series of stable heterometallic Fe 2 M cluster‐based MOFs ( NNU‐31‐M , M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO 2 and H 2 O into HCOOH and O 2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low‐valent metal M accepts electrons to reduce CO 2 , and high‐valent Fe uses holes to oxidize H 2 O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU‐31‐Zn exhibits the highest HCOOH yield of 26.3 μmol g −1  h −1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction.
Author Huang, Qing
Lu, Meng
Lan, Ya‐Qian
Liu, Jiang
Ji, Wen‐Xin
Dong, Long‐Zhang
Zhang, Lei
Author_xml – sequence: 1
  givenname: Long‐Zhang
  surname: Dong
  fullname: Dong, Long‐Zhang
  organization: Nanjing Normal University
– sequence: 2
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: Nanjing Normal University
– sequence: 3
  givenname: Jiang
  surname: Liu
  fullname: Liu, Jiang
  email: liuj@njnu.edu.cn
  organization: Nanjing Normal University
– sequence: 4
  givenname: Qing
  surname: Huang
  fullname: Huang, Qing
  organization: Nanjing Normal University
– sequence: 5
  givenname: Meng
  surname: Lu
  fullname: Lu, Meng
  organization: Nanjing Normal University
– sequence: 6
  givenname: Wen‐Xin
  surname: Ji
  fullname: Ji, Wen‐Xin
  organization: Ningxia University
– sequence: 7
  givenname: Ya‐Qian
  orcidid: 0000-0002-2140-7980
  surname: Lan
  fullname: Lan, Ya‐Qian
  email: yqlan@njnu.edu.cn
  organization: Nanjing Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31797510$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9KHTEUh4MoVW-7dVkG3LiZ2_ybyWR5vWgVpApt1-HcJFOjmYkmGeTufIQ-Y5-kkWstCOIqh_B95yTnt4-2xzBahA4InhOM6RcYnZ1TTCRhtONbaI80lNRMCLZdas5YLbqG7KL9lG4K33W4_YB2GRFSNATvIfU9w8rb6sxmG8NgM3jvdLX0UyoXfx5_H0OyprqMv8okXZ1GGOxDiLfVEgq6TjlVfYjVImbXO-3AV1fXIYe0HvO1TS59RDs9-GQ_PZ8z9PP05MfyrL64_Hq-XFzUmouW14bY3oDAcoVbJmUP0OiW9oZ2hmJKAIM0mpOWaGE4J0y2ncSAV4b0bfm4ZDN0tOl7F8P9ZFNWg0vaeg-jDVNSlFHSCtwIXNDDV-hNmOJYXleoBmMuZdnbDH1-pqbVYI26i26AuFb_VleA-QbQMaQUbf-CEKyeslFP2aiXbIrAXwnaZcgujDmC829rcqM9OG_X7wxRi2_nJ__dv-k8pCI
CitedBy_id crossref_primary_10_1073_pnas_2210550119
crossref_primary_10_3390_polym16223114
crossref_primary_10_1016_j_chempr_2024_01_031
crossref_primary_10_1002_ange_202411639
crossref_primary_10_1016_j_cej_2022_136157
crossref_primary_10_1002_ange_202423070
crossref_primary_10_1002_ange_202011614
crossref_primary_10_1039_D0TC03348K
crossref_primary_10_1021_acsaem_1c03868
crossref_primary_10_1063_5_0099758
crossref_primary_10_1016_j_mcat_2024_114162
crossref_primary_10_3390_nano14161340
crossref_primary_10_1002_cssc_202400504
crossref_primary_10_1016_j_jhazmat_2022_129875
crossref_primary_10_1021_jacs_3c11446
crossref_primary_10_1002_asia_202401154
crossref_primary_10_1002_cey2_362
crossref_primary_10_1002_gch2_202000082
crossref_primary_10_1039_D1QM01246K
crossref_primary_10_1039_D3DT01668D
crossref_primary_10_1016_j_flatc_2021_100240
crossref_primary_10_1002_ange_202418272
crossref_primary_10_1039_D1CC01865E
crossref_primary_10_1002_aenm_202003052
crossref_primary_10_1002_aesr_202200004
crossref_primary_10_1021_acscatal_2c02715
crossref_primary_10_1002_ange_202101646
crossref_primary_10_1021_acs_inorgchem_1c02294
crossref_primary_10_1007_s11426_024_2436_4
crossref_primary_10_1016_j_ccr_2024_215726
crossref_primary_10_1021_acs_inorgchem_2c01497
crossref_primary_10_1002_smtd_202401419
crossref_primary_10_1016_j_seppur_2024_130323
crossref_primary_10_1002_anie_202206193
crossref_primary_10_1016_j_saa_2022_121952
crossref_primary_10_1039_D1QI00742D
crossref_primary_10_1021_acs_chemrev_2c00587
crossref_primary_10_1016_j_seppur_2021_120005
crossref_primary_10_1002_ange_202305246
crossref_primary_10_1002_anie_202311999
crossref_primary_10_1002_smll_202201550
crossref_primary_10_1002_anie_202421248
crossref_primary_10_1021_acs_accounts_3c00751
crossref_primary_10_1021_acs_inorgchem_3c01351
crossref_primary_10_1039_D2CE00397J
crossref_primary_10_1016_j_jece_2023_110424
crossref_primary_10_1021_acsami_3c02298
crossref_primary_10_1007_s12274_023_6258_x
crossref_primary_10_1016_j_mattod_2024_12_019
crossref_primary_10_1002_adsu_202200394
crossref_primary_10_1016_j_jes_2022_01_005
crossref_primary_10_1002_anie_202305246
crossref_primary_10_1002_ange_202308523
crossref_primary_10_1016_j_seppur_2023_123206
crossref_primary_10_1002_ange_202421248
crossref_primary_10_1039_D1DT04175D
crossref_primary_10_1016_j_mcat_2024_114115
crossref_primary_10_1039_D2CP05872C
crossref_primary_10_1016_j_copbio_2021_07_009
crossref_primary_10_1002_ange_202108892
crossref_primary_10_1021_acs_inorgchem_2c01517
crossref_primary_10_1021_acs_inorgchem_0c01611
crossref_primary_10_1002_adma_202211730
crossref_primary_10_1007_s42864_023_00208_2
crossref_primary_10_1021_acscatal_0c04495
crossref_primary_10_1038_s41467_022_32449_z
crossref_primary_10_1002_adma_202210885
crossref_primary_10_1016_j_cej_2020_126383
crossref_primary_10_1002_anie_202011614
crossref_primary_10_1016_j_ccr_2021_214020
crossref_primary_10_1016_j_cclet_2022_01_039
crossref_primary_10_1016_j_inoche_2020_108138
crossref_primary_10_1002_smll_202200407
crossref_primary_10_1002_anbr_202100034
crossref_primary_10_1002_ange_202318735
crossref_primary_10_1038_s41467_024_53066_y
crossref_primary_10_1016_j_apcatb_2020_119173
crossref_primary_10_1039_D2CE01036D
crossref_primary_10_1039_D2NR01753A
crossref_primary_10_3390_catal15030208
crossref_primary_10_1039_D4QI00304G
crossref_primary_10_1002_anie_202318735
crossref_primary_10_1039_D2TA06741B
crossref_primary_10_1002_cjoc_202200571
crossref_primary_10_1002_anie_202411639
crossref_primary_10_1016_j_cclet_2023_108779
crossref_primary_10_1002_anie_202418272
crossref_primary_10_1021_acs_inorgchem_0c01199
crossref_primary_10_1039_D1QI00411E
crossref_primary_10_1021_acscatal_0c01204
crossref_primary_10_1016_j_chempr_2022_10_007
crossref_primary_10_1002_ijch_202100102
crossref_primary_10_1039_D0QI00489H
crossref_primary_10_1016_j_est_2023_109518
crossref_primary_10_1002_tcr_202200211
crossref_primary_10_1021_acsami_1c03083
crossref_primary_10_3390_molecules28124703
crossref_primary_10_1002_anie_202108892
crossref_primary_10_1016_j_cej_2023_141756
crossref_primary_10_1016_j_cej_2024_158233
crossref_primary_10_1039_D4TB01944J
crossref_primary_10_1016_j_apenergy_2024_124977
crossref_primary_10_1016_j_micromeso_2020_110626
crossref_primary_10_1016_j_seppur_2024_127466
crossref_primary_10_1002_anie_202423070
crossref_primary_10_1002_cjoc_202300677
crossref_primary_10_1002_anie_202217565
crossref_primary_10_1039_D4TA00259H
crossref_primary_10_1016_j_joei_2023_101226
crossref_primary_10_1007_s12598_024_03088_8
crossref_primary_10_1039_D3TA03712F
crossref_primary_10_1038_s41467_023_37545_2
crossref_primary_10_1002_ange_202311999
crossref_primary_10_1021_acsami_1c15117
crossref_primary_10_1002_cctc_202000905
crossref_primary_10_1016_j_cclet_2021_09_035
crossref_primary_10_1016_j_ijhydene_2024_09_447
crossref_primary_10_1002_ange_202217565
crossref_primary_10_1002_ange_202413413
crossref_primary_10_1016_j_jssc_2022_123093
crossref_primary_10_1021_acs_inorgchem_1c00499
crossref_primary_10_1016_j_ccr_2022_214561
crossref_primary_10_1007_s12209_022_00324_z
crossref_primary_10_1039_D3SE00516J
crossref_primary_10_1002_advs_202103361
crossref_primary_10_1038_s41467_025_57742_5
crossref_primary_10_1016_S1872_2067_23_64642_X
crossref_primary_10_1016_j_apcatb_2024_124310
crossref_primary_10_1007_s12274_022_5058_z
crossref_primary_10_1039_D0TA10278D
crossref_primary_10_1039_D3QI01120H
crossref_primary_10_1002_anie_202423018
crossref_primary_10_1016_j_ccr_2021_213785
crossref_primary_10_1021_acsami_0c02094
crossref_primary_10_1021_acs_inorgchem_2c01539
crossref_primary_10_1039_D2CS00289B
crossref_primary_10_1016_j_cclet_2021_10_061
crossref_primary_10_1002_anie_202101646
crossref_primary_10_1016_j_mtchem_2024_102405
crossref_primary_10_1016_j_nanoen_2020_105542
crossref_primary_10_1016_j_est_2023_109725
crossref_primary_10_1002_smll_202206724
crossref_primary_10_1016_S1872_2067_23_64556_5
crossref_primary_10_1021_jacs_1c12179
crossref_primary_10_1039_D1NJ01643A
crossref_primary_10_1016_j_nxener_2023_100041
crossref_primary_10_1039_D4TA01683A
crossref_primary_10_1016_j_ccr_2022_214664
crossref_primary_10_1016_j_jssc_2022_123647
crossref_primary_10_1021_acsaem_1c02369
crossref_primary_10_1002_ange_202111622
crossref_primary_10_1002_tcr_202000187
crossref_primary_10_1039_D2TA10100A
crossref_primary_10_1021_acsami_4c01101
crossref_primary_10_1039_D0GC01497D
crossref_primary_10_3390_molecules26165044
crossref_primary_10_1016_j_apcatb_2021_120156
crossref_primary_10_1039_D0CE01493A
crossref_primary_10_1021_acs_inorgchem_3c02099
crossref_primary_10_1039_D0GC02812F
crossref_primary_10_1016_S1872_2067_20_63715_9
crossref_primary_10_1021_acs_inorgchem_0c02781
crossref_primary_10_1002_cey2_159
crossref_primary_10_1021_jacs_2c01640
crossref_primary_10_1016_j_apcatb_2024_124765
crossref_primary_10_1021_acsami_4c00967
crossref_primary_10_1007_s11705_022_2247_y
crossref_primary_10_1002_anie_202308523
crossref_primary_10_1021_acsami_0c05094
crossref_primary_10_1002_ange_202423018
crossref_primary_10_1016_j_apsusc_2023_157453
crossref_primary_10_1002_anie_202111622
crossref_primary_10_1016_j_ccr_2022_214521
crossref_primary_10_1016_j_jcat_2024_115670
crossref_primary_10_1016_j_jece_2025_115808
crossref_primary_10_1002_smll_202305024
crossref_primary_10_1002_ange_202206193
crossref_primary_10_1021_acs_inorgchem_1c04033
crossref_primary_10_1002_anie_202413413
crossref_primary_10_1021_jacs_3c00783
crossref_primary_10_1039_D2QI00173J
crossref_primary_10_1021_jacs_1c10008
crossref_primary_10_1016_j_mtsust_2024_100745
crossref_primary_10_1021_acs_cgd_0c01348
crossref_primary_10_1007_s11426_024_2108_2
crossref_primary_10_1016_j_checat_2024_101154
crossref_primary_10_1016_j_ccr_2024_216292
crossref_primary_10_1021_acsami_2c19236
crossref_primary_10_1021_acs_inorgchem_4c04599
crossref_primary_10_1073_pnas_2118278119
crossref_primary_10_1021_acs_inorgchem_3c02765
crossref_primary_10_1021_jacs_0c11450
crossref_primary_10_1021_acs_cgd_2c00223
crossref_primary_10_6023_A21100455
crossref_primary_10_1039_D1CC02847B
crossref_primary_10_1039_D1GC02439F
crossref_primary_10_1246_cl_200905
crossref_primary_10_1021_acsanm_3c05289
crossref_primary_10_1016_j_ccr_2021_213906
crossref_primary_10_1021_jacsau_1c00186
crossref_primary_10_1002_cctc_202002034
crossref_primary_10_1021_acsaem_2c03123
crossref_primary_10_1016_j_cej_2023_148301
crossref_primary_10_1016_S1872_2067_23_64523_1
crossref_primary_10_1093_nsr_nwab104
Cites_doi 10.1039/C3CS60405E
10.1002/anie.201814729
10.1002/anie.201803587
10.1021/cs501169t
10.1016/j.apcatb.2018.09.076
10.1002/anie.201600395
10.1021/jacs.6b11027
10.1039/C6EE00383D
10.1038/323431a0
10.1002/anie.201906890
10.1126/science.aaa3145
10.1039/B912904A
10.1002/aenm.201803402
10.1021/jacs.5b08773
10.1039/C6CS00062B
10.1021/acscatal.9b02312
10.1039/C8CS00829A
10.1016/S0010-8545(02)00306-5
10.1002/ange.201803587
10.1021/cr500208k
10.1038/ncomms6723
10.1002/adfm.201400083
10.1002/ange.201600395
10.1021/acsami.5b00822
10.1002/ange.201814729
10.1126/science.1188566
10.1002/adma.201704649
10.1039/c0ce00636j
10.1107/S090744490804362X
10.1002/ange.201906890
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201913284
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 2663
ExternalDocumentID 31797510
10_1002_anie_201913284
ANIE201913284
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: the Natural Science Research of Jiangsu Higher Education Institutions of China
  funderid: 17KJB150025; 19KJB150011
– fundername: The East-West Cooperation Project of Ningxia Key R & D Plan
  funderid: 2019BFH02014
– fundername: Project funded by China Postdoctoral Science Foundation
  funderid: 2018M630572; 2019M651873
– fundername: National Natural Science Foundation of China
  funderid: 21622104; 21701085; 21871141; 21871142; 21901122
– fundername: the NSF of Jiangsu Province of China
  funderid: BK20171032
– fundername: the Natural Science Research of Jiangsu Higher Education Institutions of China
  grantid: 17KJB150025
– fundername: National Natural Science Foundation of China
  grantid: 21622104
– fundername: National Natural Science Foundation of China
  grantid: 21871142
– fundername: National Natural Science Foundation of China
  grantid: 21901122
– fundername: Project funded by China Postdoctoral Science Foundation
  grantid: 2018M630572
– fundername: National Natural Science Foundation of China
  grantid: 21701085
– fundername: National Natural Science Foundation of China
  grantid: 21871141
– fundername: the NSF of Jiangsu Province of China
  grantid: BK20171032
– fundername: The East-West Cooperation Project of Ningxia Key R & D Plan
  grantid: 2019BFH02014
– fundername: the Natural Science Research of Jiangsu Higher Education Institutions of China
  grantid: 19KJB150011
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4764-d1efda709b06399faa5c62fd28d2021a0a9dc4161c7d441396890a0bd1f632893
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 12:01:52 EDT 2025
Fri Jul 25 10:34:24 EDT 2025
Wed Feb 19 02:31:24 EST 2025
Thu Apr 24 23:00:07 EDT 2025
Tue Jul 01 02:27:03 EDT 2025
Wed Jan 22 16:34:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords heterometallic catalysts
carbon dioxide reduction
photocatalysts
metal-organic frameworks
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4764-d1efda709b06399faa5c62fd28d2021a0a9dc4161c7d441396890a0bd1f632893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2140-7980
PMID 31797510
PQID 2350049943
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2321670570
proquest_journals_2350049943
pubmed_primary_31797510
crossref_primary_10_1002_anie_201913284
crossref_citationtrail_10_1002_anie_201913284
wiley_primary_10_1002_anie_201913284_ANIE201913284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 10, 2020
PublicationDateYYYYMMDD 2020-02-10
PublicationDate_xml – month: 02
  year: 2020
  text: February 10, 2020
  day: 10
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 9
2010; 329
2019; 6
2009; 65
2015; 347
2014; 24
2011; 13
2015; 7
2019; 243
2019 2019; 58 131
2014; 43
2017; 139
1986; 323
2014; 5
2016 2016; 55 128
2014; 4
2015; 115
2015; 137
2018 2018; 57 130
2019; 48
2018; 30
2010; 3
2016; 9
2016; 45
2003; 241
e_1_2_2_3_2
e_1_2_2_4_2
e_1_2_2_5_1
e_1_2_2_23_2
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_2_2
e_1_2_2_28_3
e_1_2_2_6_3
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_9_1
e_1_2_2_28_2
e_1_2_2_29_1
e_1_2_2_27_2
e_1_2_2_25_3
e_1_2_2_25_2
e_1_2_2_26_1
Huang Q. (e_1_2_2_24_2) 2019; 6
e_1_2_2_14_1
e_1_2_2_11_3
e_1_2_2_13_1
e_1_2_2_11_2
e_1_2_2_12_1
e_1_2_2_10_2
e_1_2_2_30_1
e_1_2_2_19_2
e_1_2_2_31_1
e_1_2_2_18_2
e_1_2_2_32_1
e_1_2_2_33_1
e_1_2_2_17_1
e_1_2_2_16_1
e_1_2_2_15_1
References_xml – volume: 5
  start-page: 5723
  year: 2014
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2177
  year: 2016
  end-page: 2196
  publication-title: Energy Environ. Sci.
– volume: 323
  start-page: 431
  year: 1986
  end-page: 432
  publication-title: Nature
– volume: 30
  start-page: 1704649
  year: 2018
  publication-title: Adv. Mater.
– volume: 43
  start-page: 7501
  year: 2014
  end-page: 7519
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 43
  year: 2010
  end-page: 81
  publication-title: Energy Environ. Sci.
– volume: 347
  start-page: 970
  year: 2015
  end-page: 974
  publication-title: Science
– volume: 65
  start-page: 148
  year: 2009
  end-page: 155
  publication-title: Acta Crystallogr. Sect. D
– volume: 241
  start-page: 1
  year: 2003
  end-page: 25
  publication-title: Coord. Chem. Rev.
– volume: 139
  start-page: 356
  year: 2017
  end-page: 362
  publication-title: J. Am. Chem. Soc.
– volume: 329
  start-page: 1330
  year: 2010
  end-page: 1333
  publication-title: Science
– volume: 58 131
  start-page: 12392 12522
  year: 2019 2019
  end-page: 12397 12527
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 45
  start-page: 3221
  year: 2016
  end-page: 3243
  publication-title: Chem. Soc. Rev.
– volume: 57 130
  start-page: 9660 9808
  year: 2018 2018
  end-page: 9664 9812
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 3947
  year: 2011
  end-page: 3958
  publication-title: CrystEngComm
– volume: 243
  start-page: 236
  year: 2019
  end-page: 242
  publication-title: Appl. Catal. B
– volume: 4
  start-page: 4254
  year: 2014
  end-page: 4260
  publication-title: ACS Catal.
– volume: 137
  start-page: 13440
  year: 2015
  end-page: 13443
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1803402
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 8631
  year: 2015
  end-page: 8639
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 0
  year: 2019
  publication-title: Natl. Sci. Rev.
– volume: 55 128
  start-page: 14924 15146
  year: 2016 2016
  end-page: 14950 15174
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 9411
  year: 2019
  end-page: 9417
  publication-title: ACS Catal.
– volume: 58 131
  start-page: 5226 5280
  year: 2019 2019
  end-page: 5231 5285
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 115
  start-page: 28
  year: 2015
  end-page: 126
  publication-title: Chem. Rev.
– volume: 24
  start-page: 3885
  year: 2014
  end-page: 3896
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 2783
  year: 2019
  end-page: 2828
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_2_19_2
  doi: 10.1039/C3CS60405E
– ident: e_1_2_2_25_2
  doi: 10.1002/anie.201814729
– ident: e_1_2_2_28_2
  doi: 10.1002/anie.201803587
– ident: e_1_2_2_22_2
  doi: 10.1021/cs501169t
– ident: e_1_2_2_12_1
  doi: 10.1016/j.apcatb.2018.09.076
– ident: e_1_2_2_1_1
– ident: e_1_2_2_6_2
  doi: 10.1002/anie.201600395
– ident: e_1_2_2_23_2
  doi: 10.1021/jacs.6b11027
– ident: e_1_2_2_33_1
  doi: 10.1039/C6EE00383D
– ident: e_1_2_2_15_1
  doi: 10.1038/323431a0
– ident: e_1_2_2_11_2
  doi: 10.1002/anie.201906890
– ident: e_1_2_2_32_1
  doi: 10.1126/science.aaa3145
– ident: e_1_2_2_3_2
  doi: 10.1039/B912904A
– ident: e_1_2_2_8_2
  doi: 10.1002/aenm.201803402
– ident: e_1_2_2_20_1
– ident: e_1_2_2_21_2
  doi: 10.1021/jacs.5b08773
– ident: e_1_2_2_26_1
– ident: e_1_2_2_10_2
  doi: 10.1039/C6CS00062B
– ident: e_1_2_2_7_2
  doi: 10.1021/acscatal.9b02312
– ident: e_1_2_2_14_1
  doi: 10.1039/C8CS00829A
– ident: e_1_2_2_18_2
  doi: 10.1016/S0010-8545(02)00306-5
– ident: e_1_2_2_28_3
  doi: 10.1002/ange.201803587
– ident: e_1_2_2_16_1
  doi: 10.1021/cr500208k
– ident: e_1_2_2_27_2
  doi: 10.1038/ncomms6723
– ident: e_1_2_2_31_1
  doi: 10.1002/adfm.201400083
– ident: e_1_2_2_6_3
  doi: 10.1002/ange.201600395
– ident: e_1_2_2_17_1
– ident: e_1_2_2_13_1
  doi: 10.1021/acsami.5b00822
– ident: e_1_2_2_25_3
  doi: 10.1002/ange.201814729
– ident: e_1_2_2_2_2
  doi: 10.1126/science.1188566
– ident: e_1_2_2_5_1
– ident: e_1_2_2_4_2
  doi: 10.1002/adma.201704649
– ident: e_1_2_2_29_1
  doi: 10.1039/c0ce00636j
– ident: e_1_2_2_30_1
  doi: 10.1107/S090744490804362X
– ident: e_1_2_2_9_1
– ident: e_1_2_2_11_3
  doi: 10.1002/ange.201906890
– volume: 6
  start-page: 0
  year: 2019
  ident: e_1_2_2_24_2
  publication-title: Natl. Sci. Rev.
SSID ssj0028806
Score 2.6593354
Snippet A series of stable heterometallic Fe2M cluster‐based MOFs (NNU‐31‐M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2...
A series of stable heterometallic Fe 2 M cluster‐based MOFs ( NNU‐31‐M , M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of...
A series of stable heterometallic Fe M cluster-based MOFs (NNU-31-M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO...
A series of stable heterometallic Fe2 M cluster-based MOFs (NNU-31-M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2659
SubjectTerms Carbon dioxide
carbon dioxide reduction
Catalysts
Clusters
Crystal structure
Electrons
heterometallic catalysts
Iron
Metal-organic frameworks
Photocatalysis
Photocatalysts
Photosensitivity
Photosynthesis
Reaction mechanisms
Reagents
Selectivity
Title Stable Heterometallic Cluster‐Based Organic Framework Catalysts for Artificial Photosynthesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201913284
https://www.ncbi.nlm.nih.gov/pubmed/31797510
https://www.proquest.com/docview/2350049943
https://www.proquest.com/docview/2321670570
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KLumlefQRJ5uiQqEnJ1rJLx03yy6bQpdSupCb0cOmoY5dau9hc8pPyG_ML4nGWrvdlFBIjsYSkjUz0qfxzDcAH43QCJMTP-LoutEy9JVgys_jINc04yJX6Br4Mo9mi-DzRXjxVxa_44foHW5oGe1-jQYuVX36hzQUM7AxNEvY-1SChKAYsIWo6FvPH8Wscrr0Is59rELfsTZSdrrZffNU-gdqbiLX9uiZ7oDsJu0iTn6eLBt1oq8f8Dk-56t24dUal5KRU6Q9eJGV-7A97srBvYbUwlJVZGSG8TPVVWZBe3GpybhYItXC3c3tmT0PDXG5nZpMu6AvMkYH0apuamLxcTuAI60gX39UTVWvSgtB68v6DSymk-_jmb-uzuDrII4C3wyz3MiYCtWinFzK0Io9NywxzAIHSaUwGq9POjYWc3ERJYJKqswwR70Q_C1slVWZHQDhWidRIENOlQ6SIFchF0mb5ItUQUp74HfSSfWauhwraBSpI11mKS5b2i-bB5_69r8cacejLQedsNO18dYp42F7Ewy4Bx_613a58V-KLLNqiW3YMIot2KUevHNK0g9lIZmI7V7nAWtF_Z85pKP5-aR_OnxKpyN4ydAPgIVq6AC2mt_L7NiCpUa9bw3iHpO5C1M
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V5VAu_EPTFjASiFParJ0_HziUbVe7tF0h1Eq9BdtxRMWSVE1W1fbEI_AqvAqPwJMwkz-0IISE1APHKI7i2DOebyYz3wA8T6UhmBy7oaDQjVGBqyXXbhb5mfGskJmm0MDRNByf-G9Og9MV-NrVwjT8EH3AjTSjPq9JwSkgvfOTNZRKsCk3S6JDFfttXuWBXVyi11a-muzhFr_gfLR_PBy7bWMB1_hR6LvpwGapijypawOdKRXgjLOUxylHm6c8JVNDyN9EKcIFIcNYesrT6SCjTyL-JTz1b1AbcaLr33vXM1ZxVIemoEkIl_redzyRHt9Znu-yHfwN3C5j5drYjW7Dt26ZmhyXj9vzSm-bq18YJP-rdbwDt1rozXYbXbkLKza_B2vDruPdfUgQeeuZZWNKESo-WfRLZmeGDWdzYpP4_vnLazT5KWvKVw0bdXltbEgxsEVZlQxdgPoFDS8He_uhqIpykSPKLs_KB3ByLd_3EFbzIrfrwIQxceirQHja-LGf6UDIuK5jJjYkbRxwO3FITMvOTk1CZknDK80T2qak3yYHXvbjzxtekj-O3OqkK2nPpzLhIqidXV848Ky_jctNv4tUbos5jeGDMEI87znwqJHK_lWIOmWEx7kDvJatv8wh2Z1O9vurjX956CmsjY-PDpPDyfRgE25yCntQXx5vC1ari7l9jNiw0k9qbWTw_rrF9gd3vGfr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VrQRcKP-EFjASiFNar-38-MCh7Ha1S2FVISr1FvyTiKrbpCJZVcuJR-BReBVegSfBkz-0IISE1APHKI7i2DOebyYz3wA8tdIgTI79kGPoxqjA15JpP4tEZmjKZaYxNPBmFk6OxKvj4HgNvna1MA0_RB9wQ82oz2tU8HOb7f4kDcUKbEzNks6fikWbVnmQLi-c01a-mI7cDj9jbLz_bjjx274CvhFRKHw7SDOrIip1bZ8zpQI34cyy2DJn8hRV0hoE_iayDi1wGcaSKqrtIMMvQvold-hviJBKbBYxetsTVjGnDU09E-c-tr3vaCIp212d76oZ_A3brkLl2taNN-Fbt0pNisvpzqLSO-bTLwSS_9My3oDrLfAme42m3IS1NL8FV4ddv7vbkDjcrecpmWCCUHGWOq9kfmLIcL5ALonvn7-8dAbfkqZ41ZBxl9VGhhgBW5ZVSZwDUL-gYeUghx-KqiiXucPY5Ul5B44u5fvuwnpe5Ol9INyYOBQq4FQbEYtMB1zGdRUzciFp44HfSUNiWm52bBEyTxpWaZbgNiX9NnnwvB9_3rCS_HHkdidcSXs6lQnjQe3qCu7Bk_62W278WaTytFjgGDYII4fmqQf3GqHsX-Uwp4zcYe4Bq0XrL3NI9mbT_f7qwb889BiuHI7Gyevp7GALrjGMeWBTHroN69XHRfrQAcNKP6p1kcD7y5baH7SLZpo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+Heterometallic+Cluster-Based+Organic+Framework+Catalysts+for+Artificial+Photosynthesis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Dong%2C+Long-Zhang&rft.au=Zhang%2C+Lei&rft.au=Liu%2C+Jiang&rft.au=Huang%2C+Qing&rft.date=2020-02-10&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=7&rft.spage=2659&rft_id=info:doi/10.1002%2Fanie.201913284&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon