Stable Heterometallic Cluster‐Based Organic Framework Catalysts for Artificial Photosynthesis
A series of stable heterometallic Fe2M cluster‐based MOFs (NNU‐31‐M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and p...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 7; pp. 2659 - 2663 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
10.02.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A series of stable heterometallic Fe2M cluster‐based MOFs (NNU‐31‐M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low‐valent metal M accepts electrons to reduce CO2, and high‐valent Fe uses holes to oxidize H2O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU‐31‐Zn exhibits the highest HCOOH yield of 26.3 μmol g−1 h−1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction.
A series of stable heterometallic Fe2M cluster‐based MOFs achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. A strategy is proposed to design crystalline photocatalysts to realize the overall artificial photosynthetic reaction. |
---|---|
AbstractList | A series of stable heterometallic Fe2M cluster‐based MOFs (NNU‐31‐M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low‐valent metal M accepts electrons to reduce CO2, and high‐valent Fe uses holes to oxidize H2O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU‐31‐Zn exhibits the highest HCOOH yield of 26.3 μmol g−1 h−1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction.
A series of stable heterometallic Fe2M cluster‐based MOFs achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. A strategy is proposed to design crystalline photocatalysts to realize the overall artificial photosynthetic reaction. A series of stable heterometallic Fe M cluster-based MOFs (NNU-31-M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO and H O into HCOOH and O without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low-valent metal M accepts electrons to reduce CO , and high-valent Fe uses holes to oxidize H O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU-31-Zn exhibits the highest HCOOH yield of 26.3 μmol g h (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction. A series of stable heterometallic Fe2 M cluster-based MOFs (NNU-31-M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2 O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low-valent metal M accepts electrons to reduce CO2 , and high-valent Fe uses holes to oxidize H2 O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU-31-Zn exhibits the highest HCOOH yield of 26.3 μmol g-1 h-1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction.A series of stable heterometallic Fe2 M cluster-based MOFs (NNU-31-M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2 O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low-valent metal M accepts electrons to reduce CO2 , and high-valent Fe uses holes to oxidize H2 O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU-31-Zn exhibits the highest HCOOH yield of 26.3 μmol g-1 h-1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction. A series of stable heterometallic Fe2M cluster‐based MOFs (NNU‐31‐M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low‐valent metal M accepts electrons to reduce CO2, and high‐valent Fe uses holes to oxidize H2O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU‐31‐Zn exhibits the highest HCOOH yield of 26.3 μmol g−1 h−1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction. A series of stable heterometallic Fe 2 M cluster‐based MOFs ( NNU‐31‐M , M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO 2 and H 2 O into HCOOH and O 2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low‐valent metal M accepts electrons to reduce CO 2 , and high‐valent Fe uses holes to oxidize H 2 O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU‐31‐Zn exhibits the highest HCOOH yield of 26.3 μmol g −1 h −1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction. |
Author | Huang, Qing Lu, Meng Lan, Ya‐Qian Liu, Jiang Ji, Wen‐Xin Dong, Long‐Zhang Zhang, Lei |
Author_xml | – sequence: 1 givenname: Long‐Zhang surname: Dong fullname: Dong, Long‐Zhang organization: Nanjing Normal University – sequence: 2 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Nanjing Normal University – sequence: 3 givenname: Jiang surname: Liu fullname: Liu, Jiang email: liuj@njnu.edu.cn organization: Nanjing Normal University – sequence: 4 givenname: Qing surname: Huang fullname: Huang, Qing organization: Nanjing Normal University – sequence: 5 givenname: Meng surname: Lu fullname: Lu, Meng organization: Nanjing Normal University – sequence: 6 givenname: Wen‐Xin surname: Ji fullname: Ji, Wen‐Xin organization: Ningxia University – sequence: 7 givenname: Ya‐Qian orcidid: 0000-0002-2140-7980 surname: Lan fullname: Lan, Ya‐Qian email: yqlan@njnu.edu.cn organization: Nanjing Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31797510$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9KHTEUh4MoVW-7dVkG3LiZ2_ybyWR5vWgVpApt1-HcJFOjmYkmGeTufIQ-Y5-kkWstCOIqh_B95yTnt4-2xzBahA4InhOM6RcYnZ1TTCRhtONbaI80lNRMCLZdas5YLbqG7KL9lG4K33W4_YB2GRFSNATvIfU9w8rb6sxmG8NgM3jvdLX0UyoXfx5_H0OyprqMv8okXZ1GGOxDiLfVEgq6TjlVfYjVImbXO-3AV1fXIYe0HvO1TS59RDs9-GQ_PZ8z9PP05MfyrL64_Hq-XFzUmouW14bY3oDAcoVbJmUP0OiW9oZ2hmJKAIM0mpOWaGE4J0y2ncSAV4b0bfm4ZDN0tOl7F8P9ZFNWg0vaeg-jDVNSlFHSCtwIXNDDV-hNmOJYXleoBmMuZdnbDH1-pqbVYI26i26AuFb_VleA-QbQMaQUbf-CEKyeslFP2aiXbIrAXwnaZcgujDmC829rcqM9OG_X7wxRi2_nJ__dv-k8pCI |
CitedBy_id | crossref_primary_10_1073_pnas_2210550119 crossref_primary_10_3390_polym16223114 crossref_primary_10_1016_j_chempr_2024_01_031 crossref_primary_10_1002_ange_202411639 crossref_primary_10_1016_j_cej_2022_136157 crossref_primary_10_1002_ange_202423070 crossref_primary_10_1002_ange_202011614 crossref_primary_10_1039_D0TC03348K crossref_primary_10_1021_acsaem_1c03868 crossref_primary_10_1063_5_0099758 crossref_primary_10_1016_j_mcat_2024_114162 crossref_primary_10_3390_nano14161340 crossref_primary_10_1002_cssc_202400504 crossref_primary_10_1016_j_jhazmat_2022_129875 crossref_primary_10_1021_jacs_3c11446 crossref_primary_10_1002_asia_202401154 crossref_primary_10_1002_cey2_362 crossref_primary_10_1002_gch2_202000082 crossref_primary_10_1039_D1QM01246K crossref_primary_10_1039_D3DT01668D crossref_primary_10_1016_j_flatc_2021_100240 crossref_primary_10_1002_ange_202418272 crossref_primary_10_1039_D1CC01865E crossref_primary_10_1002_aenm_202003052 crossref_primary_10_1002_aesr_202200004 crossref_primary_10_1021_acscatal_2c02715 crossref_primary_10_1002_ange_202101646 crossref_primary_10_1021_acs_inorgchem_1c02294 crossref_primary_10_1007_s11426_024_2436_4 crossref_primary_10_1016_j_ccr_2024_215726 crossref_primary_10_1021_acs_inorgchem_2c01497 crossref_primary_10_1002_smtd_202401419 crossref_primary_10_1016_j_seppur_2024_130323 crossref_primary_10_1002_anie_202206193 crossref_primary_10_1016_j_saa_2022_121952 crossref_primary_10_1039_D1QI00742D crossref_primary_10_1021_acs_chemrev_2c00587 crossref_primary_10_1016_j_seppur_2021_120005 crossref_primary_10_1002_ange_202305246 crossref_primary_10_1002_anie_202311999 crossref_primary_10_1002_smll_202201550 crossref_primary_10_1002_anie_202421248 crossref_primary_10_1021_acs_accounts_3c00751 crossref_primary_10_1021_acs_inorgchem_3c01351 crossref_primary_10_1039_D2CE00397J crossref_primary_10_1016_j_jece_2023_110424 crossref_primary_10_1021_acsami_3c02298 crossref_primary_10_1007_s12274_023_6258_x crossref_primary_10_1016_j_mattod_2024_12_019 crossref_primary_10_1002_adsu_202200394 crossref_primary_10_1016_j_jes_2022_01_005 crossref_primary_10_1002_anie_202305246 crossref_primary_10_1002_ange_202308523 crossref_primary_10_1016_j_seppur_2023_123206 crossref_primary_10_1002_ange_202421248 crossref_primary_10_1039_D1DT04175D crossref_primary_10_1016_j_mcat_2024_114115 crossref_primary_10_1039_D2CP05872C crossref_primary_10_1016_j_copbio_2021_07_009 crossref_primary_10_1002_ange_202108892 crossref_primary_10_1021_acs_inorgchem_2c01517 crossref_primary_10_1021_acs_inorgchem_0c01611 crossref_primary_10_1002_adma_202211730 crossref_primary_10_1007_s42864_023_00208_2 crossref_primary_10_1021_acscatal_0c04495 crossref_primary_10_1038_s41467_022_32449_z crossref_primary_10_1002_adma_202210885 crossref_primary_10_1016_j_cej_2020_126383 crossref_primary_10_1002_anie_202011614 crossref_primary_10_1016_j_ccr_2021_214020 crossref_primary_10_1016_j_cclet_2022_01_039 crossref_primary_10_1016_j_inoche_2020_108138 crossref_primary_10_1002_smll_202200407 crossref_primary_10_1002_anbr_202100034 crossref_primary_10_1002_ange_202318735 crossref_primary_10_1038_s41467_024_53066_y crossref_primary_10_1016_j_apcatb_2020_119173 crossref_primary_10_1039_D2CE01036D crossref_primary_10_1039_D2NR01753A crossref_primary_10_3390_catal15030208 crossref_primary_10_1039_D4QI00304G crossref_primary_10_1002_anie_202318735 crossref_primary_10_1039_D2TA06741B crossref_primary_10_1002_cjoc_202200571 crossref_primary_10_1002_anie_202411639 crossref_primary_10_1016_j_cclet_2023_108779 crossref_primary_10_1002_anie_202418272 crossref_primary_10_1021_acs_inorgchem_0c01199 crossref_primary_10_1039_D1QI00411E crossref_primary_10_1021_acscatal_0c01204 crossref_primary_10_1016_j_chempr_2022_10_007 crossref_primary_10_1002_ijch_202100102 crossref_primary_10_1039_D0QI00489H crossref_primary_10_1016_j_est_2023_109518 crossref_primary_10_1002_tcr_202200211 crossref_primary_10_1021_acsami_1c03083 crossref_primary_10_3390_molecules28124703 crossref_primary_10_1002_anie_202108892 crossref_primary_10_1016_j_cej_2023_141756 crossref_primary_10_1016_j_cej_2024_158233 crossref_primary_10_1039_D4TB01944J crossref_primary_10_1016_j_apenergy_2024_124977 crossref_primary_10_1016_j_micromeso_2020_110626 crossref_primary_10_1016_j_seppur_2024_127466 crossref_primary_10_1002_anie_202423070 crossref_primary_10_1002_cjoc_202300677 crossref_primary_10_1002_anie_202217565 crossref_primary_10_1039_D4TA00259H crossref_primary_10_1016_j_joei_2023_101226 crossref_primary_10_1007_s12598_024_03088_8 crossref_primary_10_1039_D3TA03712F crossref_primary_10_1038_s41467_023_37545_2 crossref_primary_10_1002_ange_202311999 crossref_primary_10_1021_acsami_1c15117 crossref_primary_10_1002_cctc_202000905 crossref_primary_10_1016_j_cclet_2021_09_035 crossref_primary_10_1016_j_ijhydene_2024_09_447 crossref_primary_10_1002_ange_202217565 crossref_primary_10_1002_ange_202413413 crossref_primary_10_1016_j_jssc_2022_123093 crossref_primary_10_1021_acs_inorgchem_1c00499 crossref_primary_10_1016_j_ccr_2022_214561 crossref_primary_10_1007_s12209_022_00324_z crossref_primary_10_1039_D3SE00516J crossref_primary_10_1002_advs_202103361 crossref_primary_10_1038_s41467_025_57742_5 crossref_primary_10_1016_S1872_2067_23_64642_X crossref_primary_10_1016_j_apcatb_2024_124310 crossref_primary_10_1007_s12274_022_5058_z crossref_primary_10_1039_D0TA10278D crossref_primary_10_1039_D3QI01120H crossref_primary_10_1002_anie_202423018 crossref_primary_10_1016_j_ccr_2021_213785 crossref_primary_10_1021_acsami_0c02094 crossref_primary_10_1021_acs_inorgchem_2c01539 crossref_primary_10_1039_D2CS00289B crossref_primary_10_1016_j_cclet_2021_10_061 crossref_primary_10_1002_anie_202101646 crossref_primary_10_1016_j_mtchem_2024_102405 crossref_primary_10_1016_j_nanoen_2020_105542 crossref_primary_10_1016_j_est_2023_109725 crossref_primary_10_1002_smll_202206724 crossref_primary_10_1016_S1872_2067_23_64556_5 crossref_primary_10_1021_jacs_1c12179 crossref_primary_10_1039_D1NJ01643A crossref_primary_10_1016_j_nxener_2023_100041 crossref_primary_10_1039_D4TA01683A crossref_primary_10_1016_j_ccr_2022_214664 crossref_primary_10_1016_j_jssc_2022_123647 crossref_primary_10_1021_acsaem_1c02369 crossref_primary_10_1002_ange_202111622 crossref_primary_10_1002_tcr_202000187 crossref_primary_10_1039_D2TA10100A crossref_primary_10_1021_acsami_4c01101 crossref_primary_10_1039_D0GC01497D crossref_primary_10_3390_molecules26165044 crossref_primary_10_1016_j_apcatb_2021_120156 crossref_primary_10_1039_D0CE01493A crossref_primary_10_1021_acs_inorgchem_3c02099 crossref_primary_10_1039_D0GC02812F crossref_primary_10_1016_S1872_2067_20_63715_9 crossref_primary_10_1021_acs_inorgchem_0c02781 crossref_primary_10_1002_cey2_159 crossref_primary_10_1021_jacs_2c01640 crossref_primary_10_1016_j_apcatb_2024_124765 crossref_primary_10_1021_acsami_4c00967 crossref_primary_10_1007_s11705_022_2247_y crossref_primary_10_1002_anie_202308523 crossref_primary_10_1021_acsami_0c05094 crossref_primary_10_1002_ange_202423018 crossref_primary_10_1016_j_apsusc_2023_157453 crossref_primary_10_1002_anie_202111622 crossref_primary_10_1016_j_ccr_2022_214521 crossref_primary_10_1016_j_jcat_2024_115670 crossref_primary_10_1016_j_jece_2025_115808 crossref_primary_10_1002_smll_202305024 crossref_primary_10_1002_ange_202206193 crossref_primary_10_1021_acs_inorgchem_1c04033 crossref_primary_10_1002_anie_202413413 crossref_primary_10_1021_jacs_3c00783 crossref_primary_10_1039_D2QI00173J crossref_primary_10_1021_jacs_1c10008 crossref_primary_10_1016_j_mtsust_2024_100745 crossref_primary_10_1021_acs_cgd_0c01348 crossref_primary_10_1007_s11426_024_2108_2 crossref_primary_10_1016_j_checat_2024_101154 crossref_primary_10_1016_j_ccr_2024_216292 crossref_primary_10_1021_acsami_2c19236 crossref_primary_10_1021_acs_inorgchem_4c04599 crossref_primary_10_1073_pnas_2118278119 crossref_primary_10_1021_acs_inorgchem_3c02765 crossref_primary_10_1021_jacs_0c11450 crossref_primary_10_1021_acs_cgd_2c00223 crossref_primary_10_6023_A21100455 crossref_primary_10_1039_D1CC02847B crossref_primary_10_1039_D1GC02439F crossref_primary_10_1246_cl_200905 crossref_primary_10_1021_acsanm_3c05289 crossref_primary_10_1016_j_ccr_2021_213906 crossref_primary_10_1021_jacsau_1c00186 crossref_primary_10_1002_cctc_202002034 crossref_primary_10_1021_acsaem_2c03123 crossref_primary_10_1016_j_cej_2023_148301 crossref_primary_10_1016_S1872_2067_23_64523_1 crossref_primary_10_1093_nsr_nwab104 |
Cites_doi | 10.1039/C3CS60405E 10.1002/anie.201814729 10.1002/anie.201803587 10.1021/cs501169t 10.1016/j.apcatb.2018.09.076 10.1002/anie.201600395 10.1021/jacs.6b11027 10.1039/C6EE00383D 10.1038/323431a0 10.1002/anie.201906890 10.1126/science.aaa3145 10.1039/B912904A 10.1002/aenm.201803402 10.1021/jacs.5b08773 10.1039/C6CS00062B 10.1021/acscatal.9b02312 10.1039/C8CS00829A 10.1016/S0010-8545(02)00306-5 10.1002/ange.201803587 10.1021/cr500208k 10.1038/ncomms6723 10.1002/adfm.201400083 10.1002/ange.201600395 10.1021/acsami.5b00822 10.1002/ange.201814729 10.1126/science.1188566 10.1002/adma.201704649 10.1039/c0ce00636j 10.1107/S090744490804362X 10.1002/ange.201906890 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201913284 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 2663 |
ExternalDocumentID | 31797510 10_1002_anie_201913284 ANIE201913284 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: the Natural Science Research of Jiangsu Higher Education Institutions of China funderid: 17KJB150025; 19KJB150011 – fundername: The East-West Cooperation Project of Ningxia Key R & D Plan funderid: 2019BFH02014 – fundername: Project funded by China Postdoctoral Science Foundation funderid: 2018M630572; 2019M651873 – fundername: National Natural Science Foundation of China funderid: 21622104; 21701085; 21871141; 21871142; 21901122 – fundername: the NSF of Jiangsu Province of China funderid: BK20171032 – fundername: the Natural Science Research of Jiangsu Higher Education Institutions of China grantid: 17KJB150025 – fundername: National Natural Science Foundation of China grantid: 21622104 – fundername: National Natural Science Foundation of China grantid: 21871142 – fundername: National Natural Science Foundation of China grantid: 21901122 – fundername: Project funded by China Postdoctoral Science Foundation grantid: 2018M630572 – fundername: National Natural Science Foundation of China grantid: 21701085 – fundername: National Natural Science Foundation of China grantid: 21871141 – fundername: the NSF of Jiangsu Province of China grantid: BK20171032 – fundername: The East-West Cooperation Project of Ningxia Key R & D Plan grantid: 2019BFH02014 – fundername: the Natural Science Research of Jiangsu Higher Education Institutions of China grantid: 19KJB150011 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4764-d1efda709b06399faa5c62fd28d2021a0a9dc4161c7d441396890a0bd1f632893 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 12:01:52 EDT 2025 Fri Jul 25 10:34:24 EDT 2025 Wed Feb 19 02:31:24 EST 2025 Thu Apr 24 23:00:07 EDT 2025 Tue Jul 01 02:27:03 EDT 2025 Wed Jan 22 16:34:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | heterometallic catalysts carbon dioxide reduction photocatalysts metal-organic frameworks |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4764-d1efda709b06399faa5c62fd28d2021a0a9dc4161c7d441396890a0bd1f632893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2140-7980 |
PMID | 31797510 |
PQID | 2350049943 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2321670570 proquest_journals_2350049943 pubmed_primary_31797510 crossref_primary_10_1002_anie_201913284 crossref_citationtrail_10_1002_anie_201913284 wiley_primary_10_1002_anie_201913284_ANIE201913284 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 10, 2020 |
PublicationDateYYYYMMDD | 2020-02-10 |
PublicationDate_xml | – month: 02 year: 2020 text: February 10, 2020 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 9 2010; 329 2019; 6 2009; 65 2015; 347 2014; 24 2011; 13 2015; 7 2019; 243 2019 2019; 58 131 2014; 43 2017; 139 1986; 323 2014; 5 2016 2016; 55 128 2014; 4 2015; 115 2015; 137 2018 2018; 57 130 2019; 48 2018; 30 2010; 3 2016; 9 2016; 45 2003; 241 e_1_2_2_3_2 e_1_2_2_4_2 e_1_2_2_5_1 e_1_2_2_23_2 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_2 e_1_2_2_28_3 e_1_2_2_6_3 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_9_1 e_1_2_2_28_2 e_1_2_2_29_1 e_1_2_2_27_2 e_1_2_2_25_3 e_1_2_2_25_2 e_1_2_2_26_1 Huang Q. (e_1_2_2_24_2) 2019; 6 e_1_2_2_14_1 e_1_2_2_11_3 e_1_2_2_13_1 e_1_2_2_11_2 e_1_2_2_12_1 e_1_2_2_10_2 e_1_2_2_30_1 e_1_2_2_19_2 e_1_2_2_31_1 e_1_2_2_18_2 e_1_2_2_32_1 e_1_2_2_33_1 e_1_2_2_17_1 e_1_2_2_16_1 e_1_2_2_15_1 |
References_xml | – volume: 5 start-page: 5723 year: 2014 publication-title: Nat. Commun. – volume: 9 start-page: 2177 year: 2016 end-page: 2196 publication-title: Energy Environ. Sci. – volume: 323 start-page: 431 year: 1986 end-page: 432 publication-title: Nature – volume: 30 start-page: 1704649 year: 2018 publication-title: Adv. Mater. – volume: 43 start-page: 7501 year: 2014 end-page: 7519 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 43 year: 2010 end-page: 81 publication-title: Energy Environ. Sci. – volume: 347 start-page: 970 year: 2015 end-page: 974 publication-title: Science – volume: 65 start-page: 148 year: 2009 end-page: 155 publication-title: Acta Crystallogr. Sect. D – volume: 241 start-page: 1 year: 2003 end-page: 25 publication-title: Coord. Chem. Rev. – volume: 139 start-page: 356 year: 2017 end-page: 362 publication-title: J. Am. Chem. Soc. – volume: 329 start-page: 1330 year: 2010 end-page: 1333 publication-title: Science – volume: 58 131 start-page: 12392 12522 year: 2019 2019 end-page: 12397 12527 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 45 start-page: 3221 year: 2016 end-page: 3243 publication-title: Chem. Soc. Rev. – volume: 57 130 start-page: 9660 9808 year: 2018 2018 end-page: 9664 9812 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 3947 year: 2011 end-page: 3958 publication-title: CrystEngComm – volume: 243 start-page: 236 year: 2019 end-page: 242 publication-title: Appl. Catal. B – volume: 4 start-page: 4254 year: 2014 end-page: 4260 publication-title: ACS Catal. – volume: 137 start-page: 13440 year: 2015 end-page: 13443 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1803402 year: 2019 publication-title: Adv. Energy Mater. – volume: 7 start-page: 8631 year: 2015 end-page: 8639 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 0 year: 2019 publication-title: Natl. Sci. Rev. – volume: 55 128 start-page: 14924 15146 year: 2016 2016 end-page: 14950 15174 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 9411 year: 2019 end-page: 9417 publication-title: ACS Catal. – volume: 58 131 start-page: 5226 5280 year: 2019 2019 end-page: 5231 5285 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 115 start-page: 28 year: 2015 end-page: 126 publication-title: Chem. Rev. – volume: 24 start-page: 3885 year: 2014 end-page: 3896 publication-title: Adv. Funct. Mater. – volume: 48 start-page: 2783 year: 2019 end-page: 2828 publication-title: Chem. Soc. Rev. – ident: e_1_2_2_19_2 doi: 10.1039/C3CS60405E – ident: e_1_2_2_25_2 doi: 10.1002/anie.201814729 – ident: e_1_2_2_28_2 doi: 10.1002/anie.201803587 – ident: e_1_2_2_22_2 doi: 10.1021/cs501169t – ident: e_1_2_2_12_1 doi: 10.1016/j.apcatb.2018.09.076 – ident: e_1_2_2_1_1 – ident: e_1_2_2_6_2 doi: 10.1002/anie.201600395 – ident: e_1_2_2_23_2 doi: 10.1021/jacs.6b11027 – ident: e_1_2_2_33_1 doi: 10.1039/C6EE00383D – ident: e_1_2_2_15_1 doi: 10.1038/323431a0 – ident: e_1_2_2_11_2 doi: 10.1002/anie.201906890 – ident: e_1_2_2_32_1 doi: 10.1126/science.aaa3145 – ident: e_1_2_2_3_2 doi: 10.1039/B912904A – ident: e_1_2_2_8_2 doi: 10.1002/aenm.201803402 – ident: e_1_2_2_20_1 – ident: e_1_2_2_21_2 doi: 10.1021/jacs.5b08773 – ident: e_1_2_2_26_1 – ident: e_1_2_2_10_2 doi: 10.1039/C6CS00062B – ident: e_1_2_2_7_2 doi: 10.1021/acscatal.9b02312 – ident: e_1_2_2_14_1 doi: 10.1039/C8CS00829A – ident: e_1_2_2_18_2 doi: 10.1016/S0010-8545(02)00306-5 – ident: e_1_2_2_28_3 doi: 10.1002/ange.201803587 – ident: e_1_2_2_16_1 doi: 10.1021/cr500208k – ident: e_1_2_2_27_2 doi: 10.1038/ncomms6723 – ident: e_1_2_2_31_1 doi: 10.1002/adfm.201400083 – ident: e_1_2_2_6_3 doi: 10.1002/ange.201600395 – ident: e_1_2_2_17_1 – ident: e_1_2_2_13_1 doi: 10.1021/acsami.5b00822 – ident: e_1_2_2_25_3 doi: 10.1002/ange.201814729 – ident: e_1_2_2_2_2 doi: 10.1126/science.1188566 – ident: e_1_2_2_5_1 – ident: e_1_2_2_4_2 doi: 10.1002/adma.201704649 – ident: e_1_2_2_29_1 doi: 10.1039/c0ce00636j – ident: e_1_2_2_30_1 doi: 10.1107/S090744490804362X – ident: e_1_2_2_9_1 – ident: e_1_2_2_11_3 doi: 10.1002/ange.201906890 – volume: 6 start-page: 0 year: 2019 ident: e_1_2_2_24_2 publication-title: Natl. Sci. Rev. |
SSID | ssj0028806 |
Score | 2.6593354 |
Snippet | A series of stable heterometallic Fe2M cluster‐based MOFs (NNU‐31‐M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2... A series of stable heterometallic Fe 2 M cluster‐based MOFs ( NNU‐31‐M , M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of... A series of stable heterometallic Fe M cluster-based MOFs (NNU-31-M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO... A series of stable heterometallic Fe2 M cluster-based MOFs (NNU-31-M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2659 |
SubjectTerms | Carbon dioxide carbon dioxide reduction Catalysts Clusters Crystal structure Electrons heterometallic catalysts Iron Metal-organic frameworks Photocatalysis Photocatalysts Photosensitivity Photosynthesis Reaction mechanisms Reagents Selectivity |
Title | Stable Heterometallic Cluster‐Based Organic Framework Catalysts for Artificial Photosynthesis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201913284 https://www.ncbi.nlm.nih.gov/pubmed/31797510 https://www.proquest.com/docview/2350049943 https://www.proquest.com/docview/2321670570 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KLumlefQRJ5uiQqEnJ1rJLx03yy6bQpdSupCb0cOmoY5dau9hc8pPyG_ML4nGWrvdlFBIjsYSkjUz0qfxzDcAH43QCJMTP-LoutEy9JVgys_jINc04yJX6Br4Mo9mi-DzRXjxVxa_44foHW5oGe1-jQYuVX36hzQUM7AxNEvY-1SChKAYsIWo6FvPH8Wscrr0Is59rELfsTZSdrrZffNU-gdqbiLX9uiZ7oDsJu0iTn6eLBt1oq8f8Dk-56t24dUal5KRU6Q9eJGV-7A97srBvYbUwlJVZGSG8TPVVWZBe3GpybhYItXC3c3tmT0PDXG5nZpMu6AvMkYH0apuamLxcTuAI60gX39UTVWvSgtB68v6DSymk-_jmb-uzuDrII4C3wyz3MiYCtWinFzK0Io9NywxzAIHSaUwGq9POjYWc3ERJYJKqswwR70Q_C1slVWZHQDhWidRIENOlQ6SIFchF0mb5ItUQUp74HfSSfWauhwraBSpI11mKS5b2i-bB5_69r8cacejLQedsNO18dYp42F7Ewy4Bx_613a58V-KLLNqiW3YMIot2KUevHNK0g9lIZmI7V7nAWtF_Z85pKP5-aR_OnxKpyN4ydAPgIVq6AC2mt_L7NiCpUa9bw3iHpO5C1M |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V5VAu_EPTFjASiFParJ0_HziUbVe7tF0h1Eq9BdtxRMWSVE1W1fbEI_AqvAqPwJMwkz-0IISE1APHKI7i2DOebyYz3wA8T6UhmBy7oaDQjVGBqyXXbhb5mfGskJmm0MDRNByf-G9Og9MV-NrVwjT8EH3AjTSjPq9JwSkgvfOTNZRKsCk3S6JDFfttXuWBXVyi11a-muzhFr_gfLR_PBy7bWMB1_hR6LvpwGapijypawOdKRXgjLOUxylHm6c8JVNDyN9EKcIFIcNYesrT6SCjTyL-JTz1b1AbcaLr33vXM1ZxVIemoEkIl_redzyRHt9Znu-yHfwN3C5j5drYjW7Dt26ZmhyXj9vzSm-bq18YJP-rdbwDt1rozXYbXbkLKza_B2vDruPdfUgQeeuZZWNKESo-WfRLZmeGDWdzYpP4_vnLazT5KWvKVw0bdXltbEgxsEVZlQxdgPoFDS8He_uhqIpykSPKLs_KB3ByLd_3EFbzIrfrwIQxceirQHja-LGf6UDIuK5jJjYkbRxwO3FITMvOTk1CZknDK80T2qak3yYHXvbjzxtekj-O3OqkK2nPpzLhIqidXV848Ky_jctNv4tUbos5jeGDMEI87znwqJHK_lWIOmWEx7kDvJatv8wh2Z1O9vurjX956CmsjY-PDpPDyfRgE25yCntQXx5vC1ari7l9jNiw0k9qbWTw_rrF9gd3vGfr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VrQRcKP-EFjASiFNar-38-MCh7Ha1S2FVISr1FvyTiKrbpCJZVcuJR-BReBVegSfBkz-0IISE1APHKI7i2DOebyYz3wA8tdIgTI79kGPoxqjA15JpP4tEZmjKZaYxNPBmFk6OxKvj4HgNvna1MA0_RB9wQ82oz2tU8HOb7f4kDcUKbEzNks6fikWbVnmQLi-c01a-mI7cDj9jbLz_bjjx274CvhFRKHw7SDOrIip1bZ8zpQI34cyy2DJn8hRV0hoE_iayDi1wGcaSKqrtIMMvQvold-hviJBKbBYxetsTVjGnDU09E-c-tr3vaCIp212d76oZ_A3brkLl2taNN-Fbt0pNisvpzqLSO-bTLwSS_9My3oDrLfAme42m3IS1NL8FV4ddv7vbkDjcrecpmWCCUHGWOq9kfmLIcL5ALonvn7-8dAbfkqZ41ZBxl9VGhhgBW5ZVSZwDUL-gYeUghx-KqiiXucPY5Ul5B44u5fvuwnpe5Ol9INyYOBQq4FQbEYtMB1zGdRUzciFp44HfSUNiWm52bBEyTxpWaZbgNiX9NnnwvB9_3rCS_HHkdidcSXs6lQnjQe3qCu7Bk_62W278WaTytFjgGDYII4fmqQf3GqHsX-Uwp4zcYe4Bq0XrL3NI9mbT_f7qwb889BiuHI7Gyevp7GALrjGMeWBTHroN69XHRfrQAcNKP6p1kcD7y5baH7SLZpo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+Heterometallic+Cluster-Based+Organic+Framework+Catalysts+for+Artificial+Photosynthesis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Dong%2C+Long-Zhang&rft.au=Zhang%2C+Lei&rft.au=Liu%2C+Jiang&rft.au=Huang%2C+Qing&rft.date=2020-02-10&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=7&rft.spage=2659&rft_id=info:doi/10.1002%2Fanie.201913284&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |