Stable Heterometallic Cluster‐Based Organic Framework Catalysts for Artificial Photosynthesis

A series of stable heterometallic Fe2M cluster‐based MOFs (NNU‐31‐M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and p...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 7; pp. 2659 - 2663
Main Authors Dong, Long‐Zhang, Zhang, Lei, Liu, Jiang, Huang, Qing, Lu, Meng, Ji, Wen‐Xin, Lan, Ya‐Qian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 10.02.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A series of stable heterometallic Fe2M cluster‐based MOFs (NNU‐31‐M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low‐valent metal M accepts electrons to reduce CO2, and high‐valent Fe uses holes to oxidize H2O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU‐31‐Zn exhibits the highest HCOOH yield of 26.3 μmol g−1 h−1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction. A series of stable heterometallic Fe2M cluster‐based MOFs achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. A strategy is proposed to design crystalline photocatalysts to realize the overall artificial photosynthetic reaction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.201913284