Multi‐shelled Hollow Metal–Organic Frameworks
Hollow metal–organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi‐shelled hollow chromium (III) terephth...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 20; pp. 5512 - 5516 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
08.05.2017
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hollow metal–organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi‐shelled hollow chromium (III) terephthalate MOFs (MIL‐101) with single‐crystalline shells through step‐by‐step crystal growth and subsequent etching processes. This strategy relies on the creation of inhomogeneous MOF crystals in which the outer layer is chemically more robust than the inner layer and can be selectively etched by acetic acid. The regulation of MOF nucleation and crystallization allows the tailoring of the cavity size and shell thickness of each layer. The resultant multi‐shelled hollow MIL‐101 crystals show significantly enhanced catalytic activity during styrene oxidation. The insight gained from this systematic study will aid in the rational design and synthesis of other multi‐shelled hollow structures and the further expansion of their applications.
Promising MOF structures: Single‐crystalline multi‐shelled hollow metal–organic frameworks (MSHMs) were synthesized through step‐by‐step crystal growth and subsequent etching processes. The cavity size and shell thickness of each layer in the MSHMs was regulated through careful nucleation and crystallization of the metal–organic frameworks. The MSHM crystals show significantly increased catalytic activity. |
---|---|
AbstractList | Hollow metal–organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi‐shelled hollow chromium (III) terephthalate MOFs (MIL‐101) with single‐crystalline shells through step‐by‐step crystal growth and subsequent etching processes. This strategy relies on the creation of inhomogeneous MOF crystals in which the outer layer is chemically more robust than the inner layer and can be selectively etched by acetic acid. The regulation of MOF nucleation and crystallization allows the tailoring of the cavity size and shell thickness of each layer. The resultant multi‐shelled hollow MIL‐101 crystals show significantly enhanced catalytic activity during styrene oxidation. The insight gained from this systematic study will aid in the rational design and synthesis of other multi‐shelled hollow structures and the further expansion of their applications. Hollow metal–organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi‐shelled hollow chromium (III) terephthalate MOFs (MIL‐101) with single‐crystalline shells through step‐by‐step crystal growth and subsequent etching processes. This strategy relies on the creation of inhomogeneous MOF crystals in which the outer layer is chemically more robust than the inner layer and can be selectively etched by acetic acid. The regulation of MOF nucleation and crystallization allows the tailoring of the cavity size and shell thickness of each layer. The resultant multi‐shelled hollow MIL‐101 crystals show significantly enhanced catalytic activity during styrene oxidation. The insight gained from this systematic study will aid in the rational design and synthesis of other multi‐shelled hollow structures and the further expansion of their applications. Promising MOF structures: Single‐crystalline multi‐shelled hollow metal–organic frameworks (MSHMs) were synthesized through step‐by‐step crystal growth and subsequent etching processes. The cavity size and shell thickness of each layer in the MSHMs was regulated through careful nucleation and crystallization of the metal–organic frameworks. The MSHM crystals show significantly increased catalytic activity. Hollow metal-organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi-shelled hollow chromium (III) terephthalate MOFs (MIL-101) with single-crystalline shells through step-by-step crystal growth and subsequent etching processes. This strategy relies on the creation of inhomogeneous MOF crystals in which the outer layer is chemically more robust than the inner layer and can be selectively etched by acetic acid. The regulation of MOF nucleation and crystallization allows the tailoring of the cavity size and shell thickness of each layer. The resultant multi-shelled hollow MIL-101 crystals show significantly enhanced catalytic activity during styrene oxidation. The insight gained from this systematic study will aid in the rational design and synthesis of other multi-shelled hollow structures and the further expansion of their applications.Hollow metal-organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi-shelled hollow chromium (III) terephthalate MOFs (MIL-101) with single-crystalline shells through step-by-step crystal growth and subsequent etching processes. This strategy relies on the creation of inhomogeneous MOF crystals in which the outer layer is chemically more robust than the inner layer and can be selectively etched by acetic acid. The regulation of MOF nucleation and crystallization allows the tailoring of the cavity size and shell thickness of each layer. The resultant multi-shelled hollow MIL-101 crystals show significantly enhanced catalytic activity during styrene oxidation. The insight gained from this systematic study will aid in the rational design and synthesis of other multi-shelled hollow structures and the further expansion of their applications. |
Author | Yang, Qiu Wang, Shiji Liu, Wenxian Huo, Fengwei Huang, Jijiang Zhang, Weina Liu, Junfeng Sun, Xiaoming |
Author_xml | – sequence: 1 givenname: Wenxian surname: Liu fullname: Liu, Wenxian organization: Beijing University of Chemical Technology – sequence: 2 givenname: Jijiang surname: Huang fullname: Huang, Jijiang organization: Beijing University of Chemical Technology – sequence: 3 givenname: Qiu surname: Yang fullname: Yang, Qiu organization: Beijing University of Chemical Technology – sequence: 4 givenname: Shiji surname: Wang fullname: Wang, Shiji organization: Beijing University of Chemical Technology – sequence: 5 givenname: Xiaoming surname: Sun fullname: Sun, Xiaoming organization: Beijing University of Chemical Technology – sequence: 6 givenname: Weina surname: Zhang fullname: Zhang, Weina organization: Nanjing Tech University (NanjingTech) – sequence: 7 givenname: Junfeng surname: Liu fullname: Liu, Junfeng email: ljf@mail.buct.edu.cn organization: Beijing University of Chemical Technology – sequence: 8 givenname: Fengwei surname: Huo fullname: Huo, Fengwei email: iamfwhuo@njtech.edu.cn organization: Nanjing Tech University (NanjingTech) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28334498$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLtOwzAUhi1URMtlZUSVWFhSfOzEsceqKrQS0AXmyHFcSHHiYiequvEISLwhT4KrcpEqIRYfD993zq__EHVqW2uETgEPAGNyKetSDwiGFAPD8R7qQUIgomlKO-EfUxqlPIEuOvR-EXjOMTtAXcIpjWPBewhuW9OUH69v_kkbo4v-xBpjV_1b3Ujz8fo-c4_hhOpfOVnplXXP_hjtz6Xx-uRrHqGHq_H9aBLdzK6no-FNpOKUxREteIpFrkEVWuW5lCDyRKkEElowkhCd5wWRUlLBSEjOsIgpU7wgYl5ozDg9QhfbvUtnX1rtm6wqvQohZa1t6zPgHAiDFCCg5zvowrauDukCJRLYPCJQZ19Um1e6yJaurKRbZ99lBGCwBZSz3js9_0EAZ5u2s03b2U_bQYh3BFU2silt3ThZmr81sdVWpdHrf45kw7vp-Nf9BBFRlAw |
CitedBy_id | crossref_primary_10_1021_acs_cgd_2c00216 crossref_primary_10_1039_C9DT04668B crossref_primary_10_1002_ppsc_202000101 crossref_primary_10_1021_acs_chemrev_1c00243 crossref_primary_10_1021_acssuschemeng_2c01467 crossref_primary_10_1002_adma_202209298 crossref_primary_10_1002_advs_202104183 crossref_primary_10_1016_j_jechem_2021_12_006 crossref_primary_10_1039_C7TA05821G crossref_primary_10_1002_ange_201711600 crossref_primary_10_1002_ange_202000278 crossref_primary_10_1002_anie_202424641 crossref_primary_10_1126_sciadv_adn9896 crossref_primary_10_1002_cnma_202000272 crossref_primary_10_1016_j_matt_2020_07_013 crossref_primary_10_1007_s40820_021_00734_z crossref_primary_10_1021_jacs_9b05967 crossref_primary_10_1002_anie_202007297 crossref_primary_10_1016_j_matt_2022_07_014 crossref_primary_10_1039_C7CC09173G crossref_primary_10_1002_anie_201902171 crossref_primary_10_3390_polym11122090 crossref_primary_10_1016_j_snb_2017_10_081 crossref_primary_10_1016_j_memsci_2024_123607 crossref_primary_10_3390_molecules26061680 crossref_primary_10_1007_s12274_023_5750_7 crossref_primary_10_1007_s00604_019_3997_1 crossref_primary_10_1016_j_carbon_2019_03_074 crossref_primary_10_1016_j_jcat_2019_08_015 crossref_primary_10_1016_j_cej_2023_145818 crossref_primary_10_1021_acs_chemmater_0c00440 crossref_primary_10_3389_fchem_2019_00449 crossref_primary_10_1002_anie_201800817 crossref_primary_10_1002_smll_202307809 crossref_primary_10_1016_j_ccr_2022_214715 crossref_primary_10_1002_sstr_202200086 crossref_primary_10_1039_C9QM00201D crossref_primary_10_1007_s10853_021_06362_7 crossref_primary_10_1016_j_cej_2021_134008 crossref_primary_10_1016_j_cej_2025_161764 crossref_primary_10_1002_aenm_202003970 crossref_primary_10_1007_s12274_021_3885_y crossref_primary_10_1039_C7CS00614D crossref_primary_10_1039_C9CS00813F crossref_primary_10_1007_s12274_022_4929_7 crossref_primary_10_1016_j_aca_2022_339552 crossref_primary_10_1016_j_jcis_2020_01_049 crossref_primary_10_1039_D1MA00768H crossref_primary_10_1039_D3CE00166K crossref_primary_10_1016_j_aca_2024_342763 crossref_primary_10_1002_asia_202400896 crossref_primary_10_1016_j_matchemphys_2018_12_097 crossref_primary_10_1016_j_xinn_2022_100281 crossref_primary_10_1016_j_scib_2019_11_004 crossref_primary_10_1021_acs_cgd_9b01480 crossref_primary_10_1039_D0SC01284J crossref_primary_10_3390_molecules28010144 crossref_primary_10_1016_j_apcatb_2019_03_007 crossref_primary_10_1021_acsami_8b05098 crossref_primary_10_1021_acs_inorgchem_9b03396 crossref_primary_10_1002_anie_201814563 crossref_primary_10_1002_adfm_202303644 crossref_primary_10_1021_acsami_0c20445 crossref_primary_10_1016_j_cej_2020_125392 crossref_primary_10_1039_D0DT01558J crossref_primary_10_1016_j_matt_2023_05_024 crossref_primary_10_1016_j_talo_2024_100396 crossref_primary_10_1021_acs_inorgchem_7b02425 crossref_primary_10_1039_D0CC04015K crossref_primary_10_1016_j_aca_2020_02_014 crossref_primary_10_1021_acs_chemmater_3c01112 crossref_primary_10_1039_D0CS00070A crossref_primary_10_1002_cctc_202201615 crossref_primary_10_1016_j_jcis_2024_10_162 crossref_primary_10_1002_ange_202211031 crossref_primary_10_1016_j_jelechem_2019_113287 crossref_primary_10_1039_D4DT01701C crossref_primary_10_3390_molecules26216450 crossref_primary_10_1007_s10853_023_08619_9 crossref_primary_10_1021_acsami_1c22986 crossref_primary_10_1016_j_bios_2021_113695 crossref_primary_10_2139_ssrn_4070250 crossref_primary_10_1002_cctc_201900191 crossref_primary_10_1021_acs_chemmater_7b03875 crossref_primary_10_1002_adma_202105163 crossref_primary_10_1016_j_coco_2024_101933 crossref_primary_10_1002_adma_202301894 crossref_primary_10_1039_C7TA09082J crossref_primary_10_1039_C9NR04456F crossref_primary_10_1002_celc_202200114 crossref_primary_10_1007_s40242_024_4070_0 crossref_primary_10_1016_j_ces_2024_120293 crossref_primary_10_1021_acsanm_8b01083 crossref_primary_10_2147_IJN_S438278 crossref_primary_10_1002_adma_201800702 crossref_primary_10_1021_acs_analchem_1c00636 crossref_primary_10_1002_cplu_201800430 crossref_primary_10_1016_j_jwpe_2023_103821 crossref_primary_10_1021_acs_chemrev_4c00276 crossref_primary_10_1039_C7CE01843F crossref_primary_10_1039_C8CC00789F crossref_primary_10_1016_j_cej_2021_133086 crossref_primary_10_1016_j_jwpe_2024_106135 crossref_primary_10_1039_D3MA01024D crossref_primary_10_1021_acs_jpcc_1c08054 crossref_primary_10_20517_cs_2023_28 crossref_primary_10_1016_j_cej_2022_137966 crossref_primary_10_1016_j_chempr_2018_07_001 crossref_primary_10_1002_adfm_202001389 crossref_primary_10_1016_j_cej_2025_161158 crossref_primary_10_1016_j_actphy_2025_100071 crossref_primary_10_1039_D0CC07643K crossref_primary_10_1002_celc_201800588 crossref_primary_10_1002_advs_201802365 crossref_primary_10_1021_acs_chemmater_0c02535 crossref_primary_10_1021_acs_inorgchem_3c00764 crossref_primary_10_1002_aenm_202302515 crossref_primary_10_1002_admt_202401245 crossref_primary_10_1007_s11426_022_1398_5 crossref_primary_10_1021_jacs_1c03561 crossref_primary_10_1002_ange_201907433 crossref_primary_10_20517_microstructures_2024_62 crossref_primary_10_1016_j_cej_2023_144926 crossref_primary_10_1093_nsr_nwz147 crossref_primary_10_1021_acs_langmuir_4c03632 crossref_primary_10_1002_smll_202004614 crossref_primary_10_1016_j_jece_2022_108029 crossref_primary_10_1016_j_jpowsour_2022_232387 crossref_primary_10_1021_acs_accounts_0c00613 crossref_primary_10_1039_D1TA05201B crossref_primary_10_1021_acsami_0c04606 crossref_primary_10_1002_advs_201802373 crossref_primary_10_1002_anie_201711600 crossref_primary_10_1016_j_electacta_2019_135103 crossref_primary_10_1088_1361_6528_acec51 crossref_primary_10_1039_C9NJ02109D crossref_primary_10_1039_D3NR02212A crossref_primary_10_1093_nsr_nwz118 crossref_primary_10_1002_adma_201802349 crossref_primary_10_1016_j_apsusc_2022_155123 crossref_primary_10_1016_j_molliq_2022_120943 crossref_primary_10_1142_S1793604718300062 crossref_primary_10_1021_acsami_2c00018 crossref_primary_10_1016_j_cej_2021_129270 crossref_primary_10_1021_acs_chemrev_0c00722 crossref_primary_10_1021_jacs_9b10499 crossref_primary_10_1002_anie_202017152 crossref_primary_10_1002_smll_201902287 crossref_primary_10_1002_ange_201800817 crossref_primary_10_1002_smll_202303473 crossref_primary_10_1039_D4DT02943G crossref_primary_10_1021_acsami_4c06788 crossref_primary_10_1002_cjoc_202100932 crossref_primary_10_1016_j_nanoms_2024_10_011 crossref_primary_10_1039_C9CC06061H crossref_primary_10_1021_jacs_3c03883 crossref_primary_10_3390_ma15155292 crossref_primary_10_1016_j_cclet_2020_03_041 crossref_primary_10_1021_acs_analchem_9b05841 crossref_primary_10_1002_smll_202305881 crossref_primary_10_1016_j_apmt_2018_10_001 crossref_primary_10_1155_2018_2917591 crossref_primary_10_1016_j_ijhydene_2019_11_214 crossref_primary_10_1038_s41467_022_30520_3 crossref_primary_10_1002_aenm_202100061 crossref_primary_10_1002_smm2_1064 crossref_primary_10_1007_s12274_022_4576_z crossref_primary_10_1016_j_cej_2025_159749 crossref_primary_10_1021_acscatal_0c01432 crossref_primary_10_1002_ange_202017152 crossref_primary_10_1039_C8NA00262B crossref_primary_10_1002_anie_202000278 crossref_primary_10_1002_sstr_202200187 crossref_primary_10_1016_j_apsusc_2021_151363 crossref_primary_10_1016_j_seppur_2024_127585 crossref_primary_10_2139_ssrn_4098682 crossref_primary_10_1039_C9QI00737G crossref_primary_10_1039_D1FD00016K crossref_primary_10_1016_j_microc_2020_105747 crossref_primary_10_1021_acsami_9b13965 crossref_primary_10_1039_C8TA07080F crossref_primary_10_1021_acs_chemmater_3c03269 crossref_primary_10_1016_j_cej_2023_145421 crossref_primary_10_1021_acs_inorgchem_2c00223 crossref_primary_10_1016_j_ccr_2022_214699 crossref_primary_10_1021_acsanm_2c03009 crossref_primary_10_1016_j_jcis_2023_12_110 crossref_primary_10_1021_acsami_4c02440 crossref_primary_10_1002_adma_201803291 crossref_primary_10_1002_anie_202211031 crossref_primary_10_1016_j_scib_2021_10_008 crossref_primary_10_1039_D3TA07697K crossref_primary_10_1038_s41598_017_05636_y crossref_primary_10_1002_smll_202308502 crossref_primary_10_1021_acsami_1c02045 crossref_primary_10_2139_ssrn_4058893 crossref_primary_10_1002_vnl_22204 crossref_primary_10_1016_j_nanoms_2021_12_003 crossref_primary_10_1021_acsami_8b08861 crossref_primary_10_1002_advs_202104579 crossref_primary_10_1016_j_carbon_2024_119018 crossref_primary_10_20517_cs_2024_42 crossref_primary_10_1021_acs_cgd_1c00411 crossref_primary_10_1039_C9SC02576F crossref_primary_10_1007_s12274_017_1730_0 crossref_primary_10_1039_D2SC02838G crossref_primary_10_1016_j_cej_2022_138065 crossref_primary_10_1039_C7CC08630J crossref_primary_10_1021_acs_chemrev_9b00757 crossref_primary_10_1016_j_cclet_2020_04_053 crossref_primary_10_1002_ange_202007297 crossref_primary_10_1002_anie_202423939 crossref_primary_10_1021_acscentsci_9b01205 crossref_primary_10_1002_advs_201700592 crossref_primary_10_1016_j_cej_2023_143220 crossref_primary_10_1016_j_cej_2023_147940 crossref_primary_10_1016_j_chempr_2018_08_021 crossref_primary_10_1002_ange_201902171 crossref_primary_10_1002_anie_202012699 crossref_primary_10_1021_acsaelm_4c02094 crossref_primary_10_1088_1361_6528_ac2dc6 crossref_primary_10_1038_s41467_023_43259_2 crossref_primary_10_1039_C8CC08790C crossref_primary_10_1002_anie_201907433 crossref_primary_10_1039_D0TA03356A crossref_primary_10_1007_s11426_021_1095_y crossref_primary_10_1039_D1CC03059K crossref_primary_10_1016_j_cclet_2019_08_044 crossref_primary_10_1007_s12598_021_01853_7 crossref_primary_10_1038_s41467_018_05474_0 crossref_primary_10_1016_j_matchemphys_2020_123484 crossref_primary_10_1021_jacs_4c05044 crossref_primary_10_1021_acs_inorgchem_5c00089 crossref_primary_10_1002_ejic_201701062 crossref_primary_10_1016_j_micromeso_2023_112430 crossref_primary_10_1039_D4NR02835J crossref_primary_10_1002_ange_202012699 crossref_primary_10_1002_ange_202424641 crossref_primary_10_1002_chem_201803157 crossref_primary_10_1155_2023_4126562 crossref_primary_10_1002_smll_202311449 crossref_primary_10_1039_D1RA08088A crossref_primary_10_1002_chem_201804012 crossref_primary_10_1002_ange_201814563 crossref_primary_10_1021_acs_analchem_4c02730 crossref_primary_10_1007_s40843_019_9431_4 crossref_primary_10_1021_acsaem_8b01613 crossref_primary_10_1002_adma_201800592 crossref_primary_10_1021_acsami_8b18584 crossref_primary_10_1021_acs_cgd_1c00443 crossref_primary_10_1002_adma_201804903 crossref_primary_10_1002_smll_201801454 crossref_primary_10_1002_adma_201800426 crossref_primary_10_1039_C9QM00700H crossref_primary_10_1039_C9QI00634F crossref_primary_10_1016_j_foodchem_2024_138666 crossref_primary_10_1007_s12274_017_1615_2 crossref_primary_10_1016_j_ccr_2023_215101 crossref_primary_10_1080_14686996_2024_2420664 crossref_primary_10_1002_sstr_202000041 crossref_primary_10_1007_s11426_021_1097_9 crossref_primary_10_2139_ssrn_4160387 crossref_primary_10_1002_adfm_201802479 crossref_primary_10_1039_C9NJ05831A crossref_primary_10_1002_ange_202109336 crossref_primary_10_1039_D4CC02837F crossref_primary_10_1016_j_matt_2020_06_021 crossref_primary_10_1002_adma_202104341 crossref_primary_10_1002_advs_202204141 crossref_primary_10_1016_j_seppur_2022_122350 crossref_primary_10_1021_acsami_0c16428 crossref_primary_10_1039_C7NR06274E crossref_primary_10_1021_acsnano_2c08245 crossref_primary_10_1002_admi_202102595 crossref_primary_10_1002_adma_202007442 crossref_primary_10_1007_s11696_020_01209_y crossref_primary_10_1002_ange_202423939 crossref_primary_10_3389_fmats_2020_00037 crossref_primary_10_1039_D1FD00058F crossref_primary_10_1016_j_jpowsour_2020_227747 crossref_primary_10_1002_adma_201901744 crossref_primary_10_1016_j_chphma_2022_11_001 crossref_primary_10_1016_j_sampre_2025_100157 crossref_primary_10_1016_j_ccr_2020_213743 crossref_primary_10_1360_nso_20230016 crossref_primary_10_1021_acsanm_9b00228 crossref_primary_10_1039_C9CC04618F crossref_primary_10_1002_anie_202400012 crossref_primary_10_1039_D3GC03872F crossref_primary_10_1039_D0QM00313A crossref_primary_10_1021_jacs_4c01040 crossref_primary_10_1016_j_jelechem_2021_115893 crossref_primary_10_1007_s40242_022_2292_6 crossref_primary_10_1016_j_cej_2020_125467 crossref_primary_10_1016_j_mcat_2018_02_016 crossref_primary_10_1002_ange_202209433 crossref_primary_10_1016_j_memsci_2024_122615 crossref_primary_10_1002_ange_202400012 crossref_primary_10_1016_j_jcis_2019_06_042 crossref_primary_10_1016_j_jcis_2023_04_071 crossref_primary_10_1016_j_ccr_2023_215211 crossref_primary_10_2139_ssrn_4175045 crossref_primary_10_1002_anie_202209433 crossref_primary_10_1007_s11426_022_1295_3 crossref_primary_10_1002_aoc_6770 crossref_primary_10_1039_D1CC00548K crossref_primary_10_1039_D2TA06050G crossref_primary_10_1002_anie_202109336 crossref_primary_10_1039_C9DT01406C crossref_primary_10_1002_admt_202200238 crossref_primary_10_1039_C7DT04659F crossref_primary_10_1016_j_snb_2024_136103 crossref_primary_10_1039_C8CC03511C |
Cites_doi | 10.1002/adma.200803645 10.1126/science.1116275 10.1002/ange.201504242 10.1002/anie.201406484 10.1038/nchem.1026 10.1039/C5NR06532A 10.1002/anie.201301622 10.1039/C5TB00634A 10.1038/nchem.444 10.1002/anie.201000048 10.1021/nn406590q 10.1002/ange.201508795 10.1038/nchem.1272 10.1002/adma.201500789 10.1002/adma.201102116 10.1021/ja306869j 10.1002/adma.201304010 10.1021/ja203316q 10.1088/0957-4484/16/11/027 10.1002/adma.201400620 10.1021/la304204k 10.1007/s40843-015-0053-2 10.1002/ange.201000048 10.1021/ja0627444 10.1021/ja410994f 10.1002/adma.201405752 10.1126/science.1083440 10.1002/anie.201508795 10.1002/anie.200802248 10.1002/ange.201004745 10.1002/ange.201006141 10.1021/ja411468e 10.1002/adfm.200801130 10.1002/ange.201308589 10.1002/adma.201305319 10.1039/C4CC04749D 10.1039/b925201k 10.1021/cm4034319 10.1021/cr3002824 10.1021/ja3096703 10.1002/ange.200802248 10.1002/anie.201504242 10.1002/anie.201006141 10.1002/smll.201400362 10.1039/c0cc00706d 10.1038/nchem.1569 10.1038/ncomms14429 10.1039/C1CC16213F 10.1002/anie.201004745 10.1021/ja101208s 10.1039/c2cc17368a 10.1002/ange.201301622 10.1002/anie.201308589 10.1038/ncomms9847 10.1002/ange.201406484 10.1039/c2ce25040c 10.1007/s12274-015-0967-8 10.1021/ja205082p |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201701604 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 5516 |
ExternalDocumentID | 28334498 10_1002_anie_201701604 ANIE201701604 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: The 973 Program funderid: 2014CB932104, 2015CB932200 – fundername: The Program for Changjiang Scholars and Innovative Research Team in University funderid: IRT1205 – fundername: NSFC funderid: 21574065 – fundername: The Jiangsu Provincial Funds for Distinguished Young Scholars funderid: BK20140044 – fundername: Beijing Engineering Center for Hierarchical Catalysts – fundername: The NSFC for Distinguished Young Scholars funderid: 21625401 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AETEA AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4764-3d8709be1cdecbbaa19b5cc5153d6252ebbd2aaa3962604609436c8d29fde0683 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 02:37:47 EDT 2025 Sun Jul 13 04:19:53 EDT 2025 Mon Jul 21 05:38:34 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Tue Jul 01 03:27:28 EDT 2025 Wed Jan 22 16:20:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | heterogeneous catalysis hollow structures nanostructures nanocrystals metal-organic frameworks |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4764-3d8709be1cdecbbaa19b5cc5153d6252ebbd2aaa3962604609436c8d29fde0683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28334498 |
PQID | 1895118959 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1881261711 proquest_journals_1895118959 pubmed_primary_28334498 crossref_primary_10_1002_anie_201701604 crossref_citationtrail_10_1002_anie_201701604 wiley_primary_10_1002_anie_201701604_ANIE201701604 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 8, 2017 |
PublicationDateYYYYMMDD | 2017-05-08 |
PublicationDate_xml | – month: 05 year: 2017 text: May 8, 2017 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2013; 29 2017; 8 2015; 58 2015; 6 2009; 21 2015; 3 2009 2009; 48 121 2014; 26 2010 2010; 49 122 2012; 14 2011; 3 2013; 5 2015; 7 2014; 136 2011; 133 2013 2013; 52 125 2010; 20 2015; 27 2016 2016; 55 128 2012; 134 2010; 46 2010; 132 2015 2015; 54 127 2013; 113 2013; 135 2005; 309 2011; 23 2012; 48 2014; 8 2009; 19 2005; 16 2009; 1 2003; 300 2012; 4 2014; 50 2006; 128 2016; 9 2014; 10 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_6_1 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_1 e_1_2_2_8_2 e_1_2_2_43_2 e_1_2_2_28_1 e_1_2_2_45_1 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_47_1 e_1_2_2_60_2 e_1_2_2_59_2 e_1_2_2_13_1 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_38_3 e_1_2_2_51_1 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_36_1 e_1_2_2_57_1 e_1_2_2_3_2 e_1_2_2_48_1 e_1_2_2_5_1 e_1_2_2_5_2 e_1_2_2_23_1 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_61_2 e_1_2_2_29_3 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_25_3 e_1_2_2_46_1 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_35_3 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_37_3 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_50_3 e_1_2_2_50_2 e_1_2_2_54_1 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_33_2 e_1_2_2_14_3 e_1_2_2_16_1 e_1_2_2_58_1 e_1_2_2_14_2 e_1_2_2_35_2 e_1_2_2_56_2 |
References_xml | – volume: 27 start-page: 5365 year: 2015 end-page: 5371 publication-title: Adv. Mater. – volume: 23 start-page: 4449 year: 2011 end-page: 4452 publication-title: Adv. Mater. – volume: 48 start-page: 221 year: 2012 end-page: 223 publication-title: Chem. Commun. – volume: 133 start-page: 11932 year: 2011 end-page: 11935 publication-title: J. Am. Chem. Soc. – volume: 48 121 start-page: 60 62 year: 2009 2009 end-page: 103 108 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 458 year: 2014 end-page: 465 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 384 year: 2013 end-page: 391 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 12517 12725 year: 2014 2014 end-page: 12521 12729 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 382 year: 2011 end-page: 387 publication-title: Nat. Chem. – volume: 29 start-page: 633 year: 2013 end-page: 642 publication-title: Langmuir – volume: 133 start-page: 11422 year: 2011 end-page: 11425 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 19408 year: 2015 end-page: 19412 publication-title: Nanoscale – volume: 8 start-page: 14429 year: 2017 publication-title: Nat. Commun. – volume: 26 start-page: 4056 year: 2014 end-page: 4060 publication-title: Adv. Mater. – volume: 49 122 start-page: 6260 6400 year: 2010 2010 end-page: 6266 6406 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 132 start-page: 14321 year: 2010 end-page: 14323 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 2633 year: 2005 end-page: 2638 publication-title: Nanotechnology – volume: 46 start-page: 4312 year: 2010 end-page: 4314 publication-title: Chem. Commun. – volume: 52 125 start-page: 6417 6545 year: 2013 2013 end-page: 6420 6548 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 26 start-page: 3176 year: 2014 end-page: 3205 publication-title: Adv. Mater. – volume: 10 start-page: 2927 year: 2014 end-page: 2936 publication-title: Small – volume: 49 122 start-page: 9863 10059 year: 2010 2010 end-page: 9866 10062 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 122 start-page: 9237 9423 year: 2010 2010 end-page: 9241 9427 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 19 start-page: 1537 year: 2009 end-page: 1552 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 4595 year: 2010 end-page: 4601 publication-title: J. Mater. Chem. – volume: 5 start-page: 203 year: 2013 end-page: 211 publication-title: Nat. Chem. – volume: 48 start-page: 3379 year: 2012 end-page: 3381 publication-title: Chem. Commun. – volume: 113 start-page: 734 year: 2013 end-page: 777 publication-title: Chem. Rev. – volume: 55 128 start-page: 955 967 year: 2016 2016 end-page: 959 971 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 309 start-page: 2040 year: 2005 end-page: 2042 publication-title: Science – volume: 6 start-page: 8847 year: 2015 publication-title: Nat. Commun. – volume: 4 start-page: 310 year: 2012 end-page: 316 publication-title: Nat. Chem. – volume: 9 start-page: 158 year: 2016 end-page: 164 publication-title: Nano Res. – volume: 14 start-page: 3387 year: 2012 publication-title: CrystEngComm – volume: 300 start-page: 1127 year: 2003 end-page: 1129 publication-title: Science – volume: 54 127 start-page: 10889 11039 year: 2015 2015 end-page: 10893 11043 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 6480 year: 2015 end-page: 6489 publication-title: J. Mater. Chem. B – volume: 136 start-page: 1738 year: 2014 end-page: 1741 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 1119 year: 2014 end-page: 1125 publication-title: Chem. Mater. – volume: 58 start-page: 370 year: 2015 end-page: 377 publication-title: Sci. China Mater. – volume: 134 start-page: 14345 year: 2012 end-page: 14348 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 2812 year: 2014 end-page: 2819 publication-title: ACS Nano – volume: 21 start-page: 3621 year: 2009 end-page: 3638 publication-title: Adv. Mater. – volume: 26 start-page: 905 year: 2014 end-page: 909 publication-title: Adv. Mater. – volume: 50 start-page: 12482 year: 2014 end-page: 12485 publication-title: Chem. Commun. – volume: 128 start-page: 9024 year: 2006 end-page: 9025 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 2923 year: 2015 end-page: 2929 publication-title: Adv. Mater. – volume: 1 start-page: 695 year: 2009 end-page: 704 publication-title: Nat. Chem. – volume: 53 126 start-page: 429 439 year: 2014 2014 end-page: 433 443 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_2_61_2 doi: 10.1002/adma.200803645 – ident: e_1_2_2_43_2 doi: 10.1126/science.1116275 – ident: e_1_2_2_50_3 doi: 10.1002/ange.201504242 – ident: e_1_2_2_38_2 doi: 10.1002/anie.201406484 – ident: e_1_2_2_30_2 doi: 10.1038/nchem.1026 – ident: e_1_2_2_54_1 – ident: e_1_2_2_40_1 doi: 10.1039/C5NR06532A – ident: e_1_2_2_25_2 doi: 10.1002/anie.201301622 – ident: e_1_2_2_53_2 doi: 10.1039/C5TB00634A – ident: e_1_2_2_23_1 – ident: e_1_2_2_2_2 doi: 10.1038/nchem.444 – ident: e_1_2_2_14_2 doi: 10.1002/anie.201000048 – ident: e_1_2_2_20_2 doi: 10.1021/nn406590q – ident: e_1_2_2_28_1 – ident: e_1_2_2_35_3 doi: 10.1002/ange.201508795 – ident: e_1_2_2_8_2 doi: 10.1038/nchem.1272 – ident: e_1_2_2_36_1 – ident: e_1_2_2_34_2 doi: 10.1002/adma.201500789 – ident: e_1_2_2_19_2 doi: 10.1002/adma.201102116 – ident: e_1_2_2_49_2 doi: 10.1021/ja306869j – ident: e_1_2_2_26_2 doi: 10.1002/adma.201304010 – ident: e_1_2_2_58_1 – ident: e_1_2_2_24_2 doi: 10.1021/ja203316q – ident: e_1_2_2_52_2 doi: 10.1088/0957-4484/16/11/027 – ident: e_1_2_2_10_2 doi: 10.1002/adma.201400620 – ident: e_1_2_2_6_1 – ident: e_1_2_2_47_1 doi: 10.1021/la304204k – ident: e_1_2_2_21_2 doi: 10.1007/s40843-015-0053-2 – ident: e_1_2_2_14_3 doi: 10.1002/ange.201000048 – ident: e_1_2_2_17_2 doi: 10.1021/ja0627444 – ident: e_1_2_2_39_1 doi: 10.1021/ja410994f – ident: e_1_2_2_22_2 doi: 10.1002/adma.201405752 – ident: e_1_2_2_1_1 – ident: e_1_2_2_4_1 doi: 10.1126/science.1083440 – ident: e_1_2_2_35_2 doi: 10.1002/anie.201508795 – ident: e_1_2_2_45_1 doi: 10.1002/anie.200802248 – ident: e_1_2_2_29_3 doi: 10.1002/ange.201004745 – ident: e_1_2_2_51_1 – ident: e_1_2_2_5_2 doi: 10.1002/ange.201006141 – ident: e_1_2_2_9_2 doi: 10.1021/ja411468e – ident: e_1_2_2_44_2 doi: 10.1002/adfm.200801130 – ident: e_1_2_2_48_1 – ident: e_1_2_2_37_3 doi: 10.1002/ange.201308589 – ident: e_1_2_2_27_2 doi: 10.1002/adma.201305319 – ident: e_1_2_2_42_1 – ident: e_1_2_2_56_2 doi: 10.1039/C4CC04749D – ident: e_1_2_2_60_2 doi: 10.1039/b925201k – ident: e_1_2_2_33_2 doi: 10.1021/cm4034319 – ident: e_1_2_2_3_2 doi: 10.1021/cr3002824 – ident: e_1_2_2_41_1 doi: 10.1021/ja3096703 – ident: e_1_2_2_45_2 doi: 10.1002/ange.200802248 – ident: e_1_2_2_50_2 doi: 10.1002/anie.201504242 – ident: e_1_2_2_5_1 doi: 10.1002/anie.201006141 – ident: e_1_2_2_15_2 doi: 10.1002/smll.201400362 – ident: e_1_2_2_59_2 doi: 10.1039/c0cc00706d – ident: e_1_2_2_32_2 doi: 10.1038/nchem.1569 – ident: e_1_2_2_12_2 doi: 10.1038/ncomms14429 – ident: e_1_2_2_31_2 doi: 10.1039/C1CC16213F – ident: e_1_2_2_29_2 doi: 10.1002/anie.201004745 – ident: e_1_2_2_7_2 doi: 10.1021/ja101208s – ident: e_1_2_2_55_2 doi: 10.1039/c2cc17368a – ident: e_1_2_2_25_3 doi: 10.1002/ange.201301622 – ident: e_1_2_2_13_1 – ident: e_1_2_2_37_2 doi: 10.1002/anie.201308589 – ident: e_1_2_2_57_1 doi: 10.1038/ncomms9847 – ident: e_1_2_2_38_3 doi: 10.1002/ange.201406484 – ident: e_1_2_2_16_1 – ident: e_1_2_2_46_1 doi: 10.1039/c2ce25040c – ident: e_1_2_2_11_2 doi: 10.1007/s12274-015-0967-8 – ident: e_1_2_2_18_2 doi: 10.1021/ja205082p |
SSID | ssj0028806 |
Score | 2.6389163 |
Snippet | Hollow metal–organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties... Hollow metal-organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5512 |
SubjectTerms | Acetic acid Catalytic activity Chromium Crystal growth Crystallization Crystals Etching heterogeneous catalysis hollow structures Metal-organic frameworks nanocrystals nanostructures Nucleation Oxidation Shells Single crystals Styrene Thickness |
Title | Multi‐shelled Hollow Metal–Organic Frameworks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201701604 https://www.ncbi.nlm.nih.gov/pubmed/28334498 https://www.proquest.com/docview/1895118959 https://www.proquest.com/docview/1881261711 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7Si158P1arrCB42rZJtrubYymWKrQHsdDbklcvylbcFsFTf4LgP-wvcWZfWkUEve2yCUkmM5svycw3hFxwpgGzhYHHAH7jaVXoichwAHLUUmODQHKMRh4Mg_7Ivxm3x5-i-HN-iOrADS0j-1-jgUuVNj9IQzECG12zQuRIQ0JQdNhCVHRb8UcxUM48vIhD64AtStbGFmuuVl9dlb5BzVXkmi09vS0iy07nHif3jflMNfTLFz7H_4xqm2wWuNTt5Iq0Q9ZsskvWu2U6uD1Cs1Dd5eI1zVxHjdsHDZo-uwML8H25eMuDOrXbK7290n0y6l3ddftekW_B034Y-B43YLxCWaqN1UpJSYVqaw2IhxvYJjGrlGFSSi5wF-QH6JQY6MgwMTG2FUT8gNSSaWKPiMulFMIYQTnm8aATyZhhSPRjLbXMCod4pbxjXZCRY06MhzinUWYxCiKuBOGQy6r8Y07D8WPJejl9cWGOaUwjgTsp0YaGz6vPIEC8HZGJnc6xDGAdwHOUOuQwn_aqKcBgMAwROYRlk_dLH-LO8Pqqejv-S6UTsoHPmWtlVCe12dPcngL8mamzTMXfARmh-pI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xHODCvpQ1SCBOodhO0_jAAQFVC7QHBBK34NjmAmoRbYXg1E9A4kv4FT6hX8JMNlQQQkLiwDGJE9vjGfvZmXkDsCm4RsxW9l2O8JtOq8quDIxAIMcsM9b3laBo5HrDr154x5elyyF4zWJhEn6I_MCNLCOer8nA6UC6-MEaSiHY5JtVJpI0L_WrPLGPD7hra-_VDnGItzivHJ0fVN00sYCrvbLvucKglsrIMm2sjiKlmIxKWuPSLgzuB7iNIsOVUkIS3Pd88r7zdWC4vDZ21w8EfncYRimNONH1H57ljFUczSEJaBLYX0QzGU_kLi8OtndwHfwCbgexcrzYVSbhLRNT4uNys9PtRDv66ROD5L-S4xRMpNDb2U9sZRqGbHMGxg6yjHezwOJo5H7vuR17xxqnikbSenDqFnco_d5LEreqnUrm0Naeg4s_afE8jDRbTbsIjlBKSmMkE5SqhF0rzg0nLiNrmeVWFsDNBjjUKd86pf24DROmaB6S4MNc8AXYzsvfJUwj35ZcyfQlTGecdsgCSZtFWcKKN_LHKED6AaSattWlMgjnELIyVoCFRM_yqhBmYjdkUAAea8sPbQj3G7Wj_GrpNy-tw1j1vH4antYaJ8swTvdjT9JgBUY69127imivE63F9uXA1V8r4jtSIFlz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSMCFfSlrkECcAthO0_jAAVGqlqVCCCRuwbHdC6hFtBWCE5-AxI_wK_wCX8JMNlQQQkLiwDGxk9jjGfvZmXkDsCa4RsxW8l2O8JtOq0quDIxAIMcsM9b3laBo5OO6Xz33Di6KF33wksXCJPwQ-YEbWUY8X5OB35jG1gdpKEVgk2tWiTjSvNSt8tDe3-Gmrb1TK-MIr3Ne2T_bq7ppXgFXeyXfc4VBJZWRZdpYHUVKMRkVtcaVXRjcDnAbRYYrpYQktO_55Hzn68Bw2TB22w8EvrcfBqmAkkWUT3PCKo7WkMQzCewugpmMJnKbb_W2t3cZ_IJte6FyvNZVxuA1k1Li4nK12e1Em_rhE4HkfxLjOIymwNvZTSxlAvpscxKG97J8d1PA4ljkt8enduwba5wqmkjrzjm2uD95e3xOola1U8nc2drTcP4nLZ6BgWaraefAEUpJaYxkghKVsIbi3HBiMrKWWW5lAdxsfEOdsq1T0o_rMOGJ5iEJPswFX4CNvP5NwjPybc3FTF3CdL5phyyQtFWURfzwal6MAqTfP6ppW12qg2AOAStjBZhN1Cz_FIJM7IYMCsBjZfmhDeFuvbafX83_5qEVGDopV8KjWv1wAUboduxGGizCQOe2a5cQ6nWi5di6HLj8az18B8tfWCI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90shelled+Hollow+Metal%E2%80%93Organic+Frameworks&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Wenxian&rft.au=Huang%2C+Jijiang&rft.au=Yang%2C+Qiu&rft.au=Wang%2C+Shiji&rft.date=2017-05-08&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=20&rft.spage=5512&rft.epage=5516&rft_id=info:doi/10.1002%2Fanie.201701604&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201701604 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |