Multi‐shelled Hollow Metal–Organic Frameworks

Hollow metal–organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi‐shelled hollow chromium (III) terephth...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 20; pp. 5512 - 5516
Main Authors Liu, Wenxian, Huang, Jijiang, Yang, Qiu, Wang, Shiji, Sun, Xiaoming, Zhang, Weina, Liu, Junfeng, Huo, Fengwei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 08.05.2017
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hollow metal–organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi‐shelled hollow chromium (III) terephthalate MOFs (MIL‐101) with single‐crystalline shells through step‐by‐step crystal growth and subsequent etching processes. This strategy relies on the creation of inhomogeneous MOF crystals in which the outer layer is chemically more robust than the inner layer and can be selectively etched by acetic acid. The regulation of MOF nucleation and crystallization allows the tailoring of the cavity size and shell thickness of each layer. The resultant multi‐shelled hollow MIL‐101 crystals show significantly enhanced catalytic activity during styrene oxidation. The insight gained from this systematic study will aid in the rational design and synthesis of other multi‐shelled hollow structures and the further expansion of their applications. Promising MOF structures: Single‐crystalline multi‐shelled hollow metal–organic frameworks (MSHMs) were synthesized through step‐by‐step crystal growth and subsequent etching processes. The cavity size and shell thickness of each layer in the MSHMs was regulated through careful nucleation and crystallization of the metal–organic frameworks. The MSHM crystals show significantly increased catalytic activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.201701604